
ERGODIC THEORY

INTRODUCTION

These notes grew out of a one semester course on Ergodic Theory in Indian
Statistical Institute, Bengaluru. Several books have been used extensively. In
particular, the books of Peter Walters and Karl Petersen need special mention.
Apart from a basic knowledge of Measure Theory (inlcuding complex mea-

sures and di¤erentiation of measures) and Functional Analysis ( including Ba-
nach - Alaoglu and Krein - Milman Theorems), Ergodic Theory requires many
non-trivial results from many areas of Mathematics. To mention a few, isomor-
phism theorems of Measure Theory, existence and uniqueness of Haar measure
and extension of characters on closed subgroups of locally compact Hausdor¤
topological groups to the whole groups are needed. We include these special
topics in appendices, therby making the notes essentially self - contained. (It
may be hard to cover the topics in appendices in a one semester course). The
appendix on Isomorphism Theorems is based on Cohn�s Measure Theory and
the one on Character Theory is based on Rudin�s Fourier analysis On Groups.

A table of contents appears on page 114

Let (
;F ; P ) be a measure space and T : 
! 
 be measurable. If P �T�1 =
P (i.e. P (T�1(A)) = P (A) for all A 2 F then we say that T is a measure
preserving (m.p.) transformation. We call (
;F ; P; T ) a dynamical system
(DS). For example T (x) = a + x de�nes a m.p. transformation on R with the
�� �eld of Lebesgue measurable sets and the Lebesgue measure. Though some
of our results are true for arbitrary positive measures P we shall consider only
m.p. transformations on probability spaces in these notes. Thus P (
) is always
assumed to be 1.

Examples

Ex 0
Interval exchange transformations:
Consider the partition f[ i�1n ; in ) : 1 � i � ngg of [0; 1). De�ne T : [0:1) !

[0:1) by T (x) = 1
n + x if x 2 [ i�1n ; in ) with i < n and T (x) = x � n�1

n if
x 2 [n�1n ; nn ): T is m.p. It is an "interval exchange transformation". We can
also permute the intervals using an arbitrary permutation of f1; 2; :::; ng.

Ex 1.
Let � 2 (0; 1);
 = (0; 1); F = Borel �� �eld and P = Lebesgue measure.

Let Tx = x + �(mod 1). To see that this map is m.p. consider an interval
(a; b) � (0; �). We have T�1((a; b)) = fx : x+ � < 1 and a < x+ � < bg [ fx :
x + � � 1 and a + 1 < x + � < b + 1g = (a � � + 1; b � � + 1)g because
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b < � and a > 0. Hence P (T�1(a; b)) = b � a: Similarly if (a; b) � [�; 1) then
T�1((a; b)) = (a� �; b� �) and P (T�1(a; b)) = b� a: For an arbitrary interval
(a; b) � (0; 1) we have P (T�1(a; b)) = P (T�1(a; b) \ (0; �)) + P (T�1(a; b) \
[�; 1)) = P ((a; b) \ (0; �)) + P ((a; b) \ [�; 1)) by what we already proved and
hence T is m.p. We remark that this map is bijective and T�1x = x��(mod 1).

Ex.2
Let S1 be the circle group and a 2 S1. De�ne Tz = az for all z 2 S1. Let

P be the normalized arc-length measure on the Borel sigma �eld of S1. Then
T is m.p. [ T is rotation by angle � if a = ei�] This map is, in some sense,
equivalent to the previous one. Equivalence of m.p. transformations will be
discussed later.
In above examples T is also a bijection and T�1 is also m.p.. Such maps are

called invertible measure preserving (i.m.p.)

Ex. 3
Let Tx = 2xmod(1) on the space of Ex. 1
To show that this map is m.p. we compute T�1[ i�12n ;

i
2n ). This set is the

disjoint union of the intervals [ i�12n+1 ;
i

2n+1 ) and [
i�1
2n+1 +

1
2 ;

i
2n+1 +

1
2 ). Note that

both these intervals are contained in [0; 1). Thus PT�1[ i�12n ;
i
2n ) =

1
2n+1+

1
2n+1 =

1
2n . Since dyadic intervals generate the Borel sigma �eld we have proved that
T is m.p. [ We can show, by the same method, that Tx = kx is m.p. for
any k 2 N. Note that if x is not a dyadic rational ( so that it has a unique

dyadic expansion) and its dyadic expansion is
1X
k=1

ak
2k
( with a0ks 2 f0; 1g) then

T (
1X
k=1

ak
2k
) =

1X
k=2

ak
2k�1

as seen easily by considering the cases x < 1=2 and x �

1=2. Iteration gives Tm(
1X
k=1

ak
2k
) =

1X
k=m+1

ak
2k�m

from which we conclude that

am+1 = [2Tmx]. Thus the coe¢ cients in the dyadic are given by the formula
am = [2T

m�1x];m = 1; 2; :::. Similar statements hold for Tx = kxmod(1).

Let G be a locally compact Hausdor¤ topological group. Then there is a
positive measure P on the Borel sigma �eld of G such that P (gA) = P (A) for
all Borel sets A and all g 2 G (where gA = fgh : h 2 Ag). Any two such
measures di¤er only by a multiplicative constant. Such a measure is called a
left-Haar measure. There is also a right-Haar measure [ P (Ag) = P (A)]. If G
is abelian then the two Haar measures coincide. If G is compact then also the
two measures coincide up to a constant factor. The measures are �nite in this
case, so there is a unique probability measure P satisfying both of the above
equations. In these notes all topological groups considered are compact we refer
to the measure P as the Haar measure.

Ex. 4
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Let G be a compact group and P the Haar measure. Let g 2 G and Th = gh
for all h 2 G. Then PT�1(A) = P (g�1A) = P (A) so PT�1 = P: Hence T is
m.p.

Ex. 5
Let G be a compact group and P the Haar measure. Let T be a continuous

automorphism of G. Then PT�1(gA) = P ((T�1g)(T�1A)) = P (T�1A) so
PT�1 is also a Haar measure. Uniqueness of Haar measure implies that PT�1 =
P . Hence T is m.p.

Theorem
The only continuous automorphisms of S1 are the maps z ! 1

z and the
identity map. The only continuous automorphisms of the Torus S1 � S1 are of
the type T (a; b) = (ajbn; akbm) where j; k; n;m are integers and jm� kn = �1:
All such maps are continuous automorphisms.

Remark: using the exercise below we show that any continuous homomor-
phism if S1 is of the type z ! zn for some integer n. The only continuous
homomorphisms of the Torus S1 � S1 are of the type T (a; b) = (ajbn; akbm)
where j; k; n;m are integers.

Proof:
Let T be a continuous automorphism of S1: Let N be a positive integer.

De�ne � : [�N;N ]! S1 by �(t) = T (e2�it). A basic result in Complex Analysis
says that this map has a continuous logarithm: there is a unique continuous map
�N : [�N;N ] ! S1 such that �(t) = e�N (t) for all t 2 [�N;N ] and �N (0) = 0
[ Note that �(0) = T (1) = 1]: Uniqueness of such a � shows that �0Ns are
consistently de�ned and hence there is a unique continuous map �N : R ! S1

such that �(t) = e�(t) for all t 2 R and �(0) = 0. Now e�(t+s) = T (e2�i(t+s)) =
e�(t)e�(s) which implies �(t + s) = �(t) + �(s). [ The two sides di¤er by a
constant of the type 2�ik by continuity and they both vanish at 0]. By an
elementary result in analysis we conclude that Re�(t) = at for some a 2 R
and Im�(t) = bt for some b 2 R. We have proved that T (e2�it) = e(a+ib)t.
Necessarily

��e(a+ib)t�� = 1 so a = 0: Since eib = T (e2�i) = T (1) and e0 = T (1)
we get b = 2j� for some integer j. Thus T (z) = zj . Since T is one-to-one we
get j = �1:

Now let T be an automorphism of the torus S1 � S1(which is a group un-
der coordinatewise multiplication). Let T1(z) be the �rst coordinate of T (z; 1)
and T2(z) be the second coordinate of T (z; 1): Let T3(z) be the �rst coordi-
nate of T (1; z) and T4(z) be the second coordinate of T (1; z): Then Tj is a
homomorphism of S1 for j = 1; 2; 3; 4: Hence there exist integers j; k; n;m
such that T1(z) = zj ; v; T2(z) = zk; T3(z) = zn; T4(z) = zm. It follows that
T (a; b) = T (a; 1)T (1; b) = (aj ; ak)(bn; bm) = (ajbn; akbm). We have to deter-
mine when this map is an automorphism. If T is an automorphism the so is T�1

and so T�1(a; b) = (aj
0
bn

0
; ak

0
bm

0
) for some integers j0; n0; k0;m0: We now have
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(a; b) = TT�1(a; b) = (ajj
0+k0nbjn

0+m0n; aj
0k+k0mbn

0k+m0m)8a; b 2 S1. This im-
plies jj0 + k0n = 1; jn0 +m0n = 0; j0k + k0m = 0 and n0k +m0m = 1. In other

words
�

n j
m k

��
k0 m0

j0 n0

�
= 1. Taking determinants and noting that the

determinants of the two matrices are integers we conclude that nk �mj = �1.
Conversely suppose nk�mj = �1. The inverse of

�
n j
m k

�
has integer entries

because the determinant is �1 and the adjoint has integer entries. Thus there
is a transformation of the type S(a; b) = (aj

0
bn

0
; ak

0
bm

0
) with TS = I = ST . It

follows that T is bijective with an inverse which is also a homomorphism. The
inverse is automatically continuous.

Exercise:
Find all continuous maps f : R ! S1 � T such that f(x + y) = f(x)f(y)

for all x; y: Do the same when S1 is replaced by C. Also �nd all continuous
homomorphisms of T .

Solution: �rst part: note that f(0) = 1. Fix a positive integer N . By a stan-
dard argument in Complex Analysis there exists a unique continuous function
hN : [�N;N ] ! R such that f(x) = eihN (x) (jxj � N) and hN (0) = 1. It fol-
lows easily that h0Ns de�ne a continuous function h : R! R such that h(0) = 0
and f(x) = eih(x) for all real numbers x. Note that ei[h(a+b)�h(a)�h(b)] = 1 so
h(a+ b)�h(a)�h(b) = 2n� for some integer n. By continuity of h we conclude
that n does not depend on a and b. Since h(0) = 0 we conlude that h is additive.
Since h is additive and continuous there is a real number a such that h(x) =

ax for all x. Hence f(x) = eiax. Any function of the type eiax satis�es the given
functional equation, so the �rst part is complete. Now consider the second part.
Since f(0) = f2(0) either f(0) = 0 or f(0) = 1. If f(x) = 0 for some x then
f(x + y) = f(x)f(y) = 0 for all y which gives f � 0. If this is not the case
then f(0) = 1 and f never vanishes. Let g(x) = f(x)

jf(x)j . The �rst part can

be applied to g and we get f(x) = eiax jf(x)j. Also log jf(x)j is an additive
continuous function on R; so jf(x)j = ebx for some real number b. We now
have f(x) = e(b+ia)x. Now let � : T ! T be a continuous homomorphism and
f(x) = �(e2�ix). Then f : R ! T satis�es the equation f(x + y) = f(x)f(y)
and f is continuous. Hence f(x) = ei2�ax for some real number a. Thus
�(e2�ix) = ei2�ax. Since the left side has the same value for x = 0 and x = 1
we see that a must be an integer. It follows that �(z) = za 8z 2 T . Hence
continuous homomorphisms of T are precisely the maps z ! zn where n is an
integer. Note that such a map is injective if and only if n = 1 or n = �1. In
other words, the only automorphisms of T that are continuous are the identity
map and the map z ! 1

z .

Exercise: show that continuous homomorphisms of Tn(� T �T � :::�T (n-
times)) are all of the type (z1; z2; :::; zn)! (za111 za122 ::::; za1nn ; za211 za2n2 ::::; za2nn ; :::; zan11 zan22 ::::; zannn )
where each aij is an integer.
This is an easy consequence of the previous exercise.
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The next example is from Number Theory.

Ex. 6
De�ne T : [0; 1] ! [0; 1] by T (0) = 1 and T! = 1

! � [
1
! ] if ! > 0. If

we provide [0; 1] with the Borel sigma �eld and the Lebesgue measure it turns
out that T is not m.p.. However there is a Borel probability measure P such
that P � T�1 = P and P is equivalent to Lebesgue measure m (in the sense
P << m << P ). T is called the Gauss transformation and P is called the
Gauss measure.
Let us begin by computing T�1(a; b) where 0 < a < b < 1. We have

T�1(a; b) =
1[
n=1

f! : 1
! 2 [n; n + 1); ! 2 ( 1

b+n ;
1

a+n )g =
1[
n=1

f( 1
b+n ;

1
a+n ) \

( 1
n+1 ;

1
n ]g =

1[
n=1

( 1
b+n ;

1
a+n ) since (

1
b+n ;

1
a+n ) � (

1
n+1 ;

1
n ). Thusm(T

�1((a; b))) =

1X
n=1

b�a
(a+n)(b+n) . If T is "Lebesgue measure preserving " then

1X
n=1

1
(a+n)(b+n) = 1

whenever 0 < a < b < 1. However the left side is strictly monotonic in a (and
b).

Now let P (A) = 1
ln(2)

Z
A

1
1+xdx. We claim that P � T�1 = P . Recall that

T�1(a; b) =
1[
n=1

( 1
b+n ;

1
a+n ) and the union here is a disjoint union. Hence it

su¢ ces to show that
1X
n=1

1
ln(2)

1
a+nZ
1

b+n

1
1+xdx =

bZ
a

1
ln(2)

1
1+xdx. It is easy to see that

the (telescopic) product
1Y
n=1

a+n+1
b+n+1

b+n
a+n converges to

b+1
a+1 . The desired equation

is obtained by taking logarithms on both sides.
Measure preserving transformations in Hamiltonian dynamics: the state of

a system at time t is (p1(t); p2(t); :::; pn(t); q1(t); q2(t); :::; qn(t)) where the p0s
are the positions on the n particles in the system and the q0s are the momenta
of the particles. The motion is governed by the equations

@qi
@t =

@H
@pi

; @pi@t = �
@H
@qi
; 1 � i � n

where the HamiltonianH is a function from R2n to R. De�ne Tt; t � 0 on R2n
by Tt((p1; p2; :::; pn; q1; q2; :::; qn)) = (p1(t); p2(t); :::; pn(t); q1(t); q2(t); :::; qn(t))
where the right side is obtained by solving the system of partial di¤erential equa-
tions above with the initial conditions (p1(0); p2(0); :::; pn(0); q1(0); q2(0); :::; qn(0)) =
(p1; p2; :::; pn; q1; q2; :::; qn):

Theorem [Liouville]
Each Tt preserves Lebesgue measure on R2n.
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We shall not prove this theorem.

In above example the maps fTtg�0 satisfy the physically intuitive properties
T0 = I and Tt+s = Tt�Ts for all t; s � 0. Such a collection of measure preserving
transformation is called a �ow if (x; t)! Tt(x) is measurable.
Of course the example from Hamiltonian dynamics does not satisfy our as-

sumption that the basic measure space is a probability space.

Ex. 7
This and the next example are from Stochastic Processes.
Let 
 = R1; the space of all sequences of real numbers with the Frechet

metric d(fang; fbng) =
1X
n=1

jan�bnj
2n[1+jan�bnj] .

Exercise: the Borel sigma �eld F of 
 coincides with the sigma �eld gener-
ated by the projection maps p1; p2; ::: de�ned by pn(fa1a2; :::g) = an.
A set of the type f! 2 
 : (!n1 ; wn2 ; :::; !nk) 2 Ag where k is a positive

integer, n1; n2; :::; nk are distinct positive integers and A is a Borel set in Rk
is called a cylinder set. Noting that f! 2 
 : (!n1 ; wn2 ; :::; !nk) 2 Ag =
(pn1 ; pn2 ; :::; pnk)

�1(A) we see that the cylinder sets generate the Borel sigma
�eld. Note that a given cylinder set has many representations; for example
f! : !1 2 Ag = f! : (!1; !2) 2 A � Rg. We claim that cylinder sets form a
�eld. This is easily seen from the fact that the set of coordinates in a cylinder
set can always be enlarged (using the ��R�technique) so that any two sets can
be de�ned in terms of the same set of coordinates.
A probability measure P on the Borel sigma �eld of 
 is called a product

measure if Pf! 2 
 : (!n1 ; wn2 ; :::; !nk) 2 A1�A2�:::�Akg = Pn1(A1)Pn2(A2):::Pnk(Ak)
for some probability measures P1; P2; ::: on R.
We now assume that P is a product measure in which Pn = P1 for all n.
Claim: p1; p2; ::: is an i.i.d. sequence on (
;F ; P ):

Remark: this example is a typical i.i.d sequence in some sense. This will
elaborated upon later.
Proof: Pf! : (p1(!); p2(!); :::; pk(!) 2 A1�A2�:::�Ak)g = P1(A1)P2(A2):::Pk(Ak)

and pf! : pi(!) 2 Aig = Pi(Ai) so Pf! : (p1(!); p2(!); :::; pk(!) 2 A1 � A2 �
:::�Ak) = Pf! : p1(!) 2 A1gPf! : p2(!) 2 A2g:::Pf! : pk(!) 2 Akg
Now de�ne T : 
 ! 
 by T (!1; !2; :::) = (!2; !3; :::). We claim that

this map is m.p. The fact that PT�1(A) = P (A) for a cylinder set A fol-
lows immediately from Pf! 2 
 : (!n1 ; wn2 ; :::; !nk) 2 A1 � A2 � ::: � Akg =
P1(A1)P1(A2):::P1(Ak) and since cylinder sets generate the Borel sigma �eld it
follows that T is m.p..

Ex 8
This is similar to Ex. 7 but we replace R by a �nite set. Let S = f1; 2; :::; Ng

and pi � 0(1 � i � N) with p1+ p2+ :::+ pN = 1. Let 
 = S1; the space of all
sequences from S: Let P be a probability measure on the sigma �eld generated
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by cylinder sets of 
 such that Pf!1 = i1; !2 = i2; :::; !k = ikg = pi1pi2 :::pik .

Thus P is the �distribution�of an i.i.d sequence of random variables taking values
in S. T de�ned as in above example is again m.p.. We call such a T a Bernoulli
shift.

Ex. 9
Stationary shift

A sequence fXng of random variables on (
;F ; P ) is said to be stationary if
the joint distribution of (Xn1 ; Xn2 ; :::; Xnk) is same as that of (Xn1+m; Xn2+m; :::; Xnk+m)
for any positive integer m. Let us consider the �canonical version�of this, i.e.
assume that 
 = R1;F = cylinder sigma �eld and P is a p.m. such that
Pf! : (!n1+m; !n2+m; :::; !nk+m) 2 Ag is independent of m 2 f0; 1; 2; :::g. Let
T be the usual shift on 
 : T (!1; !2; :::) = (!2; !3; :::). Then T is m.p. Just
take m = 1 in the de�nition to show that P (T�1(A)) = P (A) for any cylinder
set A. We remark that the shift in the case if independent p0ns need not be m.p.;
it is m.p. i¤ p0ns are i.i.d. Conversely, if the shift corresponding to a sequence
fXng is m.p. then the process fXng is stationary.

Ex. 10
Markov shift
If the measure P on R1 makes fpng a Markov chain the shift T need not be

m.p.. It is m.p. if the Markov chain has a stationary distribution and the chain
starts with this distribution. If this condition holds we call T a Markov shift.

Ex. 11
A¢ ne maps
Composition of two m.p. transformations on the same probability space is

m.p.. A map on a topological group G of the type h ! gT (h) where g is a
�xed element and T is a continuous automorphism is called an a¢ ne map. By
Examples 3 and 4 above this map is m.p..
We now begin with a study of m.p. transformations. If ! 2 
 the set

fTn(!)g is called the orbit of ! under T . It is useful to think of Tn! as the
position of a point at time n.

We now show how to construct an i.m.p. transformation from a m.p. trans-
formation.

Let (
;F ; P; T ) be a DS. Let 
0 =
1Y
i=0


i where 
i = 
 for each i. Let 
0 =

f(!i) 2 
0 : T!i = !i�1 8i � 1g. Let F0 be the trace of the cylinder sigma �eld
of 
0 on 
0. Let Q be the probability measure on 
0 which makes the projection
maps i.i.d. with common distribution P: Let S(!0; !1; :::) = (T!0; !0; !1; :::).
Then S is i.m.p and it is ergodic i¤ T is.

Theorem [Poincare�s Recurrence Theorem]
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Let (
;F ; P; T ) be a DS and P (A) > 0. Then Pf! 2 A :Tn(!) 2 A for

in�nitely many ng = P (A):

Proof: let An =
1[
k=n

T�kA;n = 0; 1; 2; ::: (T 0 = I). Then An is decreasing

and T�1(An) = An+1. Since T is m.p. we get P (An) = P (A0) for all n.
This and the monotonicity of A0ns shows that P (An�A0) = 0 for all n. Let

B =
1\
n=0

An. Then Then B � A0 and P (B�A0) = 0. Therefore P ((A \

B)�(A \ A0)) = 0: Hence P (A \ B) = P (A \ A0) = P (A) (because A � A0).

The result follows if we show that A \ B � f! 2 A :Tn(!) 2 A for in�nitely

many ng. If ! 2 A \ B then for each n ! 2 An and hence ! 2 T�kA (or
T k! 2 A) for at least one k � n.
Poincare also proved a topological property of an open set of points that

return to it in�nitely often.

Theorem
Suppose 
 is a metric space and F its Borel sigma �eld. Let P be a Borel

probability measure with full support (i.e. P (U) > 0 for every non-empty open
set U). Let T be a continuous m.p. transformation on 
: Then for any open
set U the set of points of U which return to it in�nitely many times is the
complement of a set of �rst category in U:
[ Hence the points of U which return only �nitely many times if both measure

theoretically and topologically small].

Proof: for any �xed open set U consider Ak = fx 2 U : T ix =2 U 8i > kg:

This set is clearly closed and so A =
1[
k=1

Ak is an F�: Note that En = UnA is

precisely the set of points of U which return to U in�nitely many times. En
is a G� because A is an F�. Also, since every non-empty open set has positive
measure previous theorem implies P (En) = P (U). This implies that En is dense
in U . Hence En is a dense G� in U and this implies that its complement in U
is of �rst category.

Remark: more topological results will be proved later in the section on
�Topological Dynamics�. In particular we prove another recurrence theorem
there called The Birkho¤�s Recurrence Theorem.

De�nition: let (
;F ; P; T ) be a DS. We say T is ergodic if T�1(A) = A; (A 2
F) implies P (A) = 0 or 1.
A set A 2 F with T�1(A) = A is called an invariant set. The collection of

all invariant sets is a sigma �eld called the invariant sigma �eld.
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Examples:

Examples 1 and 2: we claim that the transformation in the �rst example is
ergodic i¤ � is irrational and the one in Example 2 is ergodic i¤ a is not a root
of unity.

Suppose � 2 (0; 1) be irrational. Let A be an invariant set for the transfor-
mation in Ex. 1 and de�ne f 2 L2([0; 2�]) by f = I2�A. Consider the Fourier co-

e¢ cients
^

f(n) of f . We have
^

f(n) = 1
2�

2�Z
0

e�inxI2�A(x)dx =

1Z
0

e�2�inyIA(y)dy.

Hence
^

f(n) =

1Z
0

e�2�inyIT�1(A)(y)dy =

1Z
0

e�2�in(z��)IA(z)dz = e2�in�
^

f(n).

Since e2�in� = 1 i¤ n = 0 we see that
^

f(n) = 0 for n 6= 0 which means f is a.e.
constant. Thus I2�A = 1 a.e. or I2�A = 0 a.e. which implies that P (A) = 0 or
1.
Now suppose � is a rational number p

q . Let A = f! : e
2�iq! 2 Cg where C

is a Borel set in S1. This set is invariant. If T is ergodic then P (A) = 0 or 1
for any C. The measure Q induced by the function ! ! e2�iq! takes only the
values 0 and 1:

Exercise
Show that such a measure is degenerate, i.e. Q = �a for some a 2 S1.
Hint: use a compactness argument.
We now conclude that e2�iq! is a.e. constant. Being continuous, it must be a

constant everywhere and so e2�iq! = 1 for all ! 2 (0; 1). This is a contradiction.
The proof of the corresponding result for a rotation on S1 is very similar

and we omit the details.
Ergodicity of the transformation in Ex. 7
This is an easy consequence of Kolmogorov 0 � 1 Law: if T�1(A) = A

then A 2 �fpn; pn+1; :::g for each n and hence P (A) = 0 or 1. [ Indeed A 2
�fp1; p2; :::g and so T�1(A) 2 �fp2; p3; :::g: this is easy to verify for a cylinder
set A and the collections of all Borel sets A which satis�es this property is a ��
�eld.
We now prove a basic theorem on ergodicity:

Theorem
With above notations, FAE:
1. T is ergodic
2. P (A�T�1(A)) = 0 implies P (A) = 0 or 1.
3. P (T�n(A) \B) = 0 for all n 2 N implies P (A) = 0 or P (B) = 0:
4. If f : 
 ! R is measurable and f(T (!)) = f(!) for all ! then there is a

constant c such that f = c a.e.

9



[Def: An invariant function for T is a measurable function f such that
f(T (!) = f(!) for all !].
5. If f : 
 ! R is measurable and f(T (!)) = f(!) for almost all ! then

there is a constant c such that f = c a.e.
6. If f 2 L2 and f(T (!)) = f(!) for all ! then there is a constant c such

that f = c a.e.
7. If f 2 L2 and f(T (!)) = f(!) for almost all ! then there is a constant c

such that f = c a.e.
8. If f 2 L1 and f(T (!)) = f(!) for all ! then there is a constant c such

that f = c a.e.
9. If f 2 L1 and f(T (!)) = f(!) for almost all ! then there is a constant c

such that f = c a.e.
Proof: Suppose P (A�T�1(A)) = 0. Let B be the set of points ! such

that Tn(!) 2 A for in�nitely many positive integers n. It is clear that B is an
invariant set. Hence P (B) = 0 or 1. Note that IA = IT�1(A) a.e.. By iteration
this gives IA = IT�n(A) a.e. for each n. Hence IA = lim sup

n
IT�n(A) a.e. which

means IA = IB a.e. Hence P (A) = P (B) = 0 or 1.
Since 2) obviously implies 1) we conclude that 1) and 2) are equivalent.

3) implies 1) follows by taking B = Ac. We now prove 2) implies 3). We

have P ((
1[
n=1

T�nA) \ B) = 0: Let C =
1[
n=1

T�nA. Then T�1(C) � C. Also

P (T�1(C)) = P (C) ( because T is m.p.) and hence P ((T�1C)�C) = 0. By
2) P (C) = 0 or 1. If P (A) > 0 then P (C) � P (T�1(A)) = P (A) > 0 and
P (C) = 1. But P (C \ B) = 0 and hence P (B) = 0. We have proved the
equivalence of 1), 2) and 3).
1) implies 4): let f be as in 4). For every a 2 R the set A = f! : f(!) < ag

is an invariant set. Thus Pf! : f(!) < ag = 0 or 1 for each a. Since this
probability is a monotonic function of a is easy to see that there is a0 such that
Pf! : f(!) < ag = 0 if a < a0 and Pf! : f(!) < ag = 1 if a > a0: Thus Pf! :
f(!) =2 [a0� 1

n ; a0+
1
n )g � Pf! : f(!) < a0� 1

ng+Pf! : f(!) � a0+
1
ng = 0+0

for each n. Letting n!1 we get Pf! : f(!) = a0g = 1
4) implies 1): just take f = IA:
The equivalence of 2) and 5) is similar to that of 1) and 4): if f(T (!) =

f(!) for almost all x and A = f! : f(!) < ag then P (A�T�1(A)) = 0 since
IT�1(A)(!) = IA(T!) = f! : f(T (!)) < ag which di¤ers from f! : f(!) <
ag = A only by a null set. Conversely P (A�T�1(A)) = 0 and f = IA imply
f(T (!) = f(!) for almost all !.
Since indicator functions belong to both L1 and L2 it is clear that we can

restrict f to functions in either of these spaces without any change in proof.
This completes the proof.
In the course of the above proof we have made an elementary but very useful

observation:
if T is ergodic and C is a measurable set with T�1(C) � C then P (C) = 0 or

1. Indeed P (T�1(C)) = P (C) ( because T is m.p.) and hence P ((T�1C)�C) =
0 and we can apply equivalence of 1) and 2).
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The same conclusion holds if C � T�1(C); if T is i.m.p and ergodic we can
replace the hypothesis by either of the two conditions T (C) � C;C � T (C).

Theorem
Let X be a compact metric space and P a Borel probability measure on X

with full support (i.e. P (U) > 0 for every non-empty open set U). If T : X ! X
is ergodic then almost all orbits are dense (i.e. Pfx : fTn(x) : n = 0; 1; 2; :::g is
dense in Xg = 1:

Proof: let fUng be a countable base for the topology. Then x 2
1\
n=1

1[
k=0

T�kUn

i¤ the orbit of x intersects each Un i¤ the orbit of x intersects each open set

i¤ the orbit of x is dense. It remains to show Pf
1\
n=1

1[
k=0

T�kUng = 1. Let

Cn =
1[
k=0

T�kUn. Then T�1(Cn) � Cn and hence P (Cn) = 0 or 1. However,

Cn � Un and P (Un) > 0 so P (Cn) = 1. This is true for each n so P (
1\
n=1

Cn) = 1

as required.

Remark: this theorem proves that if a rotation z ! az on S1 is ergodic then
the orbit of some point is dense which means fangn�0 is dense. [ The orbit of
some point is dense implies orbit of every point is dense!].

For the next theorem we need the following facts from the theory of topo-
logical groups:

Let G be a compact metric topological group and
^

G its dual group.
^

G is the
collection of all characters on 
, i.e. continuous homomorphisms 
 : G ! S1

which is a group under pointwise multiplication. Let P be the Haar measure
on G: [Recall that on any compact group there is a unique probability measure
P on the Borel sigma �eld such that P (gA) = P (Ag) = P (A) for all Borel sets
A and all g. This measure is the Haar measure of the group]. Each character

 belongs to L2(P ) and any two distinct characters are orthogonal: if 
1 6= 
2

then 
 = 
1

2
is also a character and

Z

dP =

Z

(ag)dP (g) (by de�nition of

Haar measure)

= 
(a)

Z

dP for each a. Since 
 is not the constant character it follows thatZ


dP = 0. This means
Z

1

�

2dP = 0 as stated. Of course each character has

norm 1 in L2. Since G is a compact metric space the space C(G) is separable and
C(G) is dense in L2. Thus L2 is separable too ( since uniform approximation

implies approximation in L2) and hence
^

G is a countable set f
ig. It can be
shown that the orthonormal set f
ig is complete. [ If we assume that for each

11



g 6= 1 there is a character 
 such that 
(g) 6= 1 the we can use Stone-Weierstrass
Theorem to conclude that the vector space spanned by the characters, which is
clearly an algebra, is dense in C(G) and this implies that f
ig is complete. We

refer the reader to Theorem (22.17), p. 345 of Abstract Harmonic Analysis Vol
I by E. Hewitt And K. A. Ross]. The expansion of an L2 function w.r.t. the
orthonormal basis f
ig is called the Fourier series expansion of f .

Theorem
Let G be a compact metric topological group and Tg = ag. Then T is

ergodic i¤ fangn�0 is dense. In this case G is necessarily abelian.

Proof: T is ergodic implies fangn�0 is dense. This follows from above corol-
lary and the fact that Haar measure has full support. Now suppose fangn�0 is
dense. It is clear that G is abelian. Let f 2 L2 and f � T = f . Recalling that

the dual group
^

G is countable, say, f
1; 
2; :::g, and that the characters f
ig
form an orthonormal basis for L2 we can write f =

X
i

< f; 
i > 
i. Hence

f(g) = f(Tg) = f(ag) =
X
i

< f; 
i > 
i(ag) =
X
i

< f; 
i > 
i(a)
i(g). ThusX
i

< f; 
i > 
i =
X
i

< f; 
i > 
i(a)
i. Orthonormality of 

0
is implies that

< f; 
i >=< f; 
i > 
i(a) for each i. If 
i(a) = 1 then 
i(a
n) = 1 for each n

and the hypothesis now implies that 
i = 1. Thus < f; 
i >= 0 except when

i = 1 which implies f =

X
i

< f; 
i > 
i is a constant. This completes the

proof.

Theorem
The map T : S1 ! S1 de�ned by Tz = az where a 2 S1 is ergodic i¤ a is

not a root of unity.

Proof: we have to show that fangn�0 is dense in S1 i¤ a is not a root of
unity. If a is a root of unity then fangn�0 is a �nite set and hence it is not
dense. Suppose now that a is not a root of unity. Then fa; a2; :::g is an in�nite
set and hence it has a limit point. Hence, if � > 0 we can �nd positive integers n
and k such that

��an � an+k�� < �=2. For some m the points an; an+k; :::; an+mk

form an � net for S1. This of course implies that fangn�0 is dense in S1:

APPENDIX
SEPARABILITY OF C(X)

Theorem
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Let X be a compact Hausdor¤ space. Then X is metrizable i¤ C(X) is
separable.

One way is easy. if ffng is dense in C(X) then d(x; y) =
1X
n=1

jfn(x)�fn(y)j
2n[1+jfn(x)�fn(y)j]

de�nes a metric on X such that the identity map from X with the original topol-
ogy to X with the metric d is continuous (in view of continuity of the functions
fn) and the inverse map is automatically continuous by compactness.
Now let (X; d) be a compact metric space. For each n we can �nd a �nite set

fxn;1; xn;2; :::; xn;kng such that X = B(xn;1
1
n )[B(xn;2

1
n )[ :::[B(xn;kn

1
n ). Let

fn;i be a continuous function : X ! [0; 1] such that fn;i(x) = 1 if d(x; xn;i) < 1
n

and fn;i(x) = 0 if d(x; xn;i) � 2
n . If x 6= y choose n such that 3

n < d(x; y). Then
x 2 B(xn;i 1n ) for some i and fn;i(x) = 1. Also d(y; xn;i) �

2
n because, otherwise,

d(x; y) � d(x; xn;i) + d(xn;i; y) <
1
n +

2
n =

3
n a contradiction. Thus fn;i(y) =

0 6= 1 = fn;i(x). We have proved that the set ffn;i : 1 � i � kn; n = 1; 2; :::g
separates points. By Stone-Wierestrass Theorem �nite linear combinations of
�nite product of these functions form a dense subalgebra of C(X): Hence �nite
rational linear combinations of �nite product of these functions form a countable
dense subset of C(X).

End of Appendix

Ergodicity of a continuous homomorphism on the torus S1 � S1 ( coordi-
natewise multiplication).
Let T : S1�S1 ! S1�S1 be a continuous homomorphism. Then there exist

integers a; b; c; d such that T (u; v) = (uavb; ucvd) 8(u; v) 2 S1 � S1. To see this
note that the two components of T (u; 1) and T (1; v) are homomorphisms of S1.
Since any homomorphism of S1 is of the type u ! ua for some integer a and
since T (u; v) = T (u; 1)T (1; v) we are done. Let us prove that T is surjective if

and only if det
�
a b
c d

�
6= 0. Indeed, if T is not surjective then its range is a

proper (compact) subgroup and hence there is a non-trivial character which has
the value 1 at every point of the range. Hence there exists characters 
1; 
2 of
S1, no both 1, such that 
1(u

avb)
2(u
cvd) = 1 8u; v 2 S1. There exists integers

�1; �2 such that 
1(u) = u�1 and 
2(v) = v�2 ; thus . ua�1+c�2vb�1+d�2 � 1.
which implies a�1 + c�2 and b�1 + d�2 = 0. Note that �1 and �2 cannot both

be 0. It follows . that the matrix
�
a b
c d

�
is singular and its determinant

is 0. Conversely, if the determinant is 0 then there exists integers �1; �2 not
both 0 such that a�1 + c�2 and b�1 + d�2 = 0. [ There exists a real number
� such that �(a; b) = (c; d) and � is obviously rational. If � = p

q we can take
�1 = p; �2 = �q]. For any point (�; �) = T (u; v) in the range of T we have
��1��2 = ua�1vb�1uc�2vd�2 = u0v0 = 1. This implies that T is not surjective. [
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For example (�; 1) is not in the range of T if � is not a root of unity if �1 6= 0
and (1; �) is not in the range of T if � is not a root of unity if �2 6= 0].

We now use the following characterization of ergodicity of onto homomor-
phisms of compact metric groups:

if G is a compact metric group and T : G! G is a surjective homomorphism
then T is ergodic if and only if the condition 
 � Tn = 
 for some character 

of G and some non-zero integer n implies 
 = 1.
[ Proof: suppose f 2 L1 and f�T = f . Let f =

X
an
n be the Fourier series

of f . Then
X

an
n �T j =
X

an
n 8j. Fix n and suppose 
n �T; 
n �T 2; 
n �
T 3; ::: are all distinct. Then an = coe¢ cient of 
n�T j on the right side and these
coe¢ cients are an1 ; an2 ; ::: for distinct n

0
is. Hence

X
i

janij2 =
X
i

janj2 = 1,

a contradiction unless an = 0. Hence 
n � T; 
n � T 2; 
n � T 3; ::: cannot all
be distinct except when an = 0. However, 
n � T k = 
n � T l; k < l implies

n � T l�k = 
n. If we assume that 
 � Tn = 
 for some character 
 of G
and some non-zero integer n implies 
 = 1 it follows that the only non-zero
coe¢ cient in the series

X
an
n is the one corresponding to 
 = 1 and so f

is a constant. This proves the if part. Now suppose T is ergodic. Suppose

 � Tn = 
 for some character 
 of G and some non-zero integer n. We have
to show 
 = 1. Let m be the least positive integer such that 
 � Tm = 
. Let
f = 
 + 
 � T + 
 � T 2 + ::: + 
 � Tm�1. Then f is an invarant L1 function,
hence constant. Since 
; 
 � T; 
 � T 2; :::; 
 � Tm�1 are distince characters they
are orthogonal and this is possible only when m = 1 and f = 
 is a constant].

Theorem
With above notations T is ergodic if and only if no root of unity is an eigen

value of
�
a b
c d

�
.

Proof: if T is not ergodic then there is a non-trivial character 
 and a non-
zero integer n such that 
 � Tn = 
. Since 
(z; �) = (zk; �l) for some integers
k; l not both 0 we have (uAvB)k(uCvD)l = (uk; vl) for all u; v 2 S1 where�
A B
C D

�
=

�
a b
c d

�n
. This implies Ak + Cl = k and Bk + Dl = l.

This proves that transpose of
�
A B
C D

�
, hence

�
A B
C D

�
itself has 1 as

an eigen value. Since eigen values of
�
A B
C D

�
are the n � th powers of

those of
�
a b
c d

�
we have proved that

�
a b
c d

�
has an n� th root of unity

as an eigen value. Conversely suppose 1 is an eigen value of
�
A B
C D

�
=�

a b
c d

�n
,hence an eigen vaue of its transpose, for some positive integer n.
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Then there exist integers �1; �2 not both zero such that
�
A C
B D

��
�1
�2

�
=�

�1
�2

�
. Let 
1(z) = z�1 and 
2(z) = z�2 . Then 
 = (
1; 
2) is a non-trivial

character of S1 � S1. We claim that 
 � Tn = 
. For this we have to show
that (uAvB)�1(uCvD)�2 = u�1v�2 . This is true because A�1 + C�2=�1 and
B�1 +D�2 = �2.
Remark: the result extends to the k� torus S1�S1� :::�S1.and the proof

is similar.
Necessary and su¢ cient conditions for ergodicity of a¢ ne maps will be given

later.
The Guass transformation (Ex. 6) is ergodic. Proof will be given later.

THE ERGODIC THEOREM

The Ergodic Theorem is really a set of theorems about the convergence
of certain �time� averages. We prove a number of versions of this important
theorem.

Theorem [von Neuamnn Ergodic Theorem (alias Mean Ergodic Theorem)]
Let H be a Hilbert space and U : H ! H be an isometry. If x 2 H then

f 1n (x+Ux+U
2x+ :::+Un�1x)g converges to some point z 2 H with Uz = z:

Proof: let M be the closure of the range of (I � U) and N = fx : Ux = xg:
Clearly M and N are closed subspaces of L2. We claim that M? = N . Note
that x 2 M? ,< x; y � Uy >= 08y ,< x � U�x; y >= 08y , U�x = x.
We have to show that the conditions Ux = x and U�x = x are equivalent for
isometries. We have kU�x� xk2 =< U�x� x;U�x� x >
= kU�xk2 + kxk2 � 2Re < Ux; x >. Hence Ux = x implies kU�x� xk2 =

kU�xk2 � kxk2 � kU�k2 kxk2 � kxk2

= kUk2 kxk2 � kxk2 = 0 and so U�x = x: The reverse implication fol-
lows by changing U to U�. This proves the claim. Now let x 2 L2(P ): We
can write x = y + z where y 2 M and z 2 N . Hence 1

n (x + Ux + U2x +
::: + Un�1x) = 1

n (y + Uy + U2y + ::: + Un�1y) + 1
n (z + Uz + U2z + ::: +

Un�1z). The second term is z (independent of n). If � > 0 then there exists
u such that ky � (I � U)uk < �. Let v = u � Uu so that kv � yk < �. Now

 1
n (y + Uy + U

2y + :::+ Un�1y)� 1
n (v + Uv + U

2v + :::+ Un�1v)


 < � and

1
n (v+Uv+U

2v+:::+Un�1v) = 1
n ((u�Uu)+(Uu�U

2u)+:::+(Un�1u�Unu)) =
1
n (u�U

nu)! 0 as n!1. It is now clear that 1n (y+Uy+U
2y+:::+Un�1y)! 0

as n!1 and hence 1
n (x+Ux+U

2x+ :::+Un�1x)! z. The proof is complete.

Remark: the limit here is obviously the projection of x on N = fz : Uz = zg:
What has this theorem to do with m.p. transformations? Well, if (
;F ; P; T )

is a DS then H = L2(P ) is a Hilbert space and Uf = f �T de�nes an isometry
on it. Thus we have:
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Corollary
Let (
;F ; P; T ) be a DS and f 2 L2(P ): Then
f 1n (f + f �T + f �T

2+ :::+ f �Tn�1)g converges in L2 norm to an invariant

function g with
Z
fdP =

Z
gdP . If T is ergodic then g is constant a.e..

Proof: Only the last part needs a proof. Since L2 convergence implies L1

convergence we get
Z
gdP = limf 1n (

Z
fdP +

Z
f �TdP + :::+

Z
f �Tn�1dP ) =Z

fdP: The limit g satis�es g � T = g a.e. and hence it is a constant if T is

ergodic.

Corollary [ The L1 Ergodic Theorem]
Let (
;F ; P; T ) be a DS and f 2 L1(P ): Then
f 1n (f + f �T + f �T

2+ :::+ f �Tn�1)g converges in L1 norm to an invariant

function g with
Z
fdP =

Z
gdP . If T is ergodic then g is constant.

Proof: if f 2 L1(P ) and � > 0 then there exists g 2 L2(P ) such that
kf � gk2 < �. Let �n =

1
n (f + f � T + f � T 2 + ::: + f � Tn�1) and �n =

1
n (g+g�T+g�T

2+:::+g�Tn�1). Then k�n � �nk1 < � because kf � gk1 < � and
T is m.p.. It follows that k�n � �mk1 < 2�+k�n � �mk1 � 2�+k�n � �mk2 < 3�
if n and m are su¢ ciently large. This proves convergence of f 1n (y + f � T +

f � T 2 + ::: + f � Tn�1)g in L1 norm. The equation
Z
fdP =

Z
gdP and the

fact that g is a constant when T is ergodic are proved exactly as in previous
theorem.
We now prove a more powerful version of the theorem.

Theorem [Birkho¤ Ergodic Theorem alias Pointwise Ergodic Theorem]
Let (
;F ; P; T ) be a DS and f 2 L1(P ): Then
f 1n (f + f � T + f � T 2 + ::: + f � Tn�1)g converges almost everywhere and

in L1 to an almost invariant function g with
Z
fdP =

Z
gdP . If T is ergodic

then g is constant.
We �rst prove the following:

Theorem [ Maximal Ergodic Theorem]
Let (
;F ; P ) be a probability space, U : L1(P ) ! L1(P ) be a positive

contraction (i.e. a linear map such that Uf � 0 whenever f � 0 and kUk � 1).
Let N 2 N; f 2 L1(P ); s0(f) = 0; sk(f) = f + Uf + U2f + :::Uk�1f and

FN = maxfsk(f) : 0 � k � Ng. Then
Z

fx:FN (x)>0g

fdP � 0.

Proof: (due to Garcia)
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Note that if 0 � n < N then FN � sn and the hypothesis implies UFN �
Usn = sn+1 � f . Hence UFN + f � maxfsn+1 : 0 � n < Ng = maxfsn :
1 � n � Ng: On the set fx : FN (x) > 0g we have maxfsn : 1 � n � Ng =
maxfsn : 0 � n � Ng = FN . It follows that UFN+f � FN on fx : FN (x) > 0g.

Hence
Z

fx:FN (x)>0g

fdP �
Z

fx:FN (x)>0g

FNdP �
Z

fx:FN (x)>0g

UFNdP =

Z
FNdP �

Z
fx:FN (x)>0g

UFNdP

�
Z
FNdP �

Z
UFNdP (because UFN � 0). But

Z
UFNdP = kUFNk1 �

kFNk1 =
Z
FNdP and hence

Z
FNdP �

Z
UFNdP � 0.

In particular if (
;F ; P; T ) a dynamical system then Uf = f � T de�nes an
operator on L1(P ) satisfying the conditions of the theorem.

Proof of Birkho¤�s theorem: let g(x) = lim sup
n!1

1
n (f + f � T + f � T 2 + ::: +

f � Tn�1)(x) and h(x) = lim inf
n!1

1
n (f + f � T + f � T 2 + ::: + f � Tn�1)(x).

We claim that g and h are invariant. This follows easily from the identity
1
n (f + f � T + f � T 2 + ::: + f � Tn�1)(Tx) = 1

n (f � T + f � T 2 + ::: + f �
Tn)(x) = n+1

n
1

n+1 (f + f � T + f � T
2 + :::+ f � Tn)(x)� 1

nf(x). Let a < b with
a; b 2 Q. Consider Ea;b = fx : h(x) < a < b < g(x)g. We have T�1(Ea;b) =
Ea;b and Ea;b � fx : sup

n

1
n (f + f � T + f � T 2 + ::: + f � Tn�1)(x) > bg =

Eb (say). We apply the Maximal Ergodic Theorem with (
;F ; P ) changed
to (Ea;b;F \ Ea;b; P (:\Ea;b)P (Ea;b)

; T jEa;b) and f replaced by f � b and . We getZ
fx:FN (x)>bg\Ea;b

(f � b)dP � 0. Clearly, the sets fx : FN (x) > bg increase to Eb(

and Ea;b � Eb). Thus, letting N ! 1 we get
Z
Ea;b

fdP � bP (Ea;b): Replace f

by �f and (a; b) by (�b;�a) to get
Z
Ea;b

fdP � aP (Ea;b). These two inequalities

give bP (Ea;b) � aP (Ea;b) which implies that P (Ea;b) = 0: Varying a and b we
conclude that g = h a.e. which means f 1n (f + f � T + f � T

2 + :::+ f � Tn�1)g
converges almost everywhere.
To prove L1 converges we observe thatM = ff 2 L1 : f 1n (f+f �T+f �T

2+
:::+f �Tn�1)g converges in L1g is a closed subset of L1. This follows easily from
the fact



 1
n (f + f � T + f � T

2 + :::+ f � Tn�1)� 1
m (f + f � T + f � T

2 + :::+ f � Tm�1)



1
�

 1

n (g + g � T + g � T
2 + :::+ g � Tn�1)� 1

m (g + g � T + g � T
2 + :::+ g � Tm�1)




1
+

2 kf � gk1 in view of the fact that T is m.p.. Thus, if f 2
�
M and � > 0 we

can choose g 2M with kf � gk1 < � and the inequality just derived shows that

17



f 1n (f +f �T +f �T
2+ :::+f �Tn�1)g is Cauchy, hence convergent in L1. Since

M contains L1 by Dominated Convergence Theorem we conclude that M is
dense and closed, hence equals L1.
Let g be the pointwise and L1 limit of f 1n (f+f �T +f �T

2+ :::+f �Tn�1)g.
We have g � T = lim 1

n (f � T + f � T 2 + :::+ f � Tn) = lim 1
n (f � T + f � T 2 +

::: + f � Tn) = lim 1
n+1 (f � T + f � T 2 + ::: + f � Tn)(x) = g; so g � T = g

a.e.. By L1 convergence and the fact that T is m.p. it follows that
Z
gdP =

lim

Z
1
n (f � T + f � T

2 + :::+ f � Tn)dP =
Z
fdP and the proof is complete.

Remark: with a little extra e¤ort we can show that the theorem is true if
we replace the probability measure P by an arbitrary positive measure.
Identifying the limiting function:
let G consist of those sets A 2 F for which IT�1(A) = IA a.e. ( i.e.

P (A�T�1(A)) = 0). G is a sigma �eld. We have:

Theorem
Let (
;F ; P; T ) be a DS and f 2 L1(P ): Then
f 1n (f + f � T + f � T

2+ :::+ f � Tn�1)g converges almost everywhere and in
L1 to E(f jG):

Proof: let g be the limit of f 1n (f + f � T + f � T 2 + ::: + f � Tn�1)g in
Birkho¤�s Theorem. We claim that g is measurable w.r.t G. Indeed g = g � T
a.e.. Hence, for any Borel set C in R IT�1g�1(C) = I(g�T )�1(C) = Ig�1(C) a.e.

so g�1(C) 2 G. It remains only to show that
Z
A

fdP =

Z
A

gdP for all g 2 G.

But this follows from L1 convergence in Birkho¤�s theorem and the fact thatZ
A

1
n (f + f � T + f � T

2 + :::+ f � Tn�1)dP =
Z
fdP .

Theorem
FAE
a) The limiting function in Birkho¤�s theorem is a.s. constant for every

f 2 L1
b) the sigma �eld G is trivial in the sense every set in this sigma �eld has

probability 0 or 1

c) E(f jG) =
Z
fdP a.s. for every f 2 L1.

d) T is ergodic.

Proof: for a) implies d) take f = IA where A is invariant; for c) implies b)
take f = IA where A 2 G. Rest of the proof is straightforward.

Theorem [ Strong Law Of Large Numbers]
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Let fXng be an i.i.d. sequence of random variables on a probability space
(
;F ; P ). If E jX1j <1 then X1+X2+:::+Xn

n ! EX1 a.s. and in L1.

Proof: we use the ideas from Ex. 7 above. Let 
1 = R1;F1 = Borel
sigma �eld of 
1 and Q = P � (X1; X2; :::)

�1. Let Yn be the projection to the
n� th coordinate. Then fYng is i.i.d on (
1;F1; Q). Also, Yn = Y1 � Tn where
T (a1; a2; :::) = (a2; a3; :::): Let E = ffang 2 R1 : lim a1+a2+:::+an

n existsg: We
leave it as an exercise to show that this set is indeed a Borel set in R1. It follows
that Q(E) = P (X1; X2; :::)

�1(E). Birkho¤�s theorem implies that Q(E) = 1

and we conclude that Pf! : fX1(!)+X2(!)+:::+Xn(!)
n g convergesg = 1. Also

X1+X2+:::+Xn

n � X1+X2+:::+Xm

m




1
=


X1+X2+:::+Xn

n � Y1+Y2+:::+Ym
m




1
! 0 so

X1+X2+:::+Xn

n converges in L1 too. The limiting random variable Z is invariant
and T is ergodic and hence Z is a.s. constant. By L1 convergence the constant

is
Z
X1dP . This completes the proof.

Theorem [Lp Ergodic Theorem]
Let (
;F ; P; T ) be a DS. and f 2 Lp where 1 < p <1. Then f 1n (f+f �T +

f�T 2+:::+f�Tn�1)g converges in Lp. More generally let U : Lp ! Lp be a linear
map such that supfkUnk : n � 0g <1. Then f 1n (f +Uf +U

2f + :::+Un�1f)g
converges in Lp. The limit function g satis�es Ug = g.

Proof: f 1n (f +Uf +U
2f + :::+Un�1f)g is bounded sequence in Lp. Hence

there is a weakly convegent subsequence. Let 1
nk
(f+Uf+U2f+:::+Unk�1f)!

g weakly in Lp. Since U is (weak-weak) continuous we have
R
hU 1

nk
(f + Uf +

U2f + :::+ Unk�1f)dP !
R
hg 8h 2 Lq where q = p

p�1 . Now f � Unf = (I �

U)
n�1X
j=1

U jf . Averaging over 0 � n < nk we see that f� 1
nk
(f +Uf +U2f + :::+

Unk�1f) = (I�U)h for some h 2 Lp. Let fk = 1
nk
(f+Uf+U2f+:::+Unk�1f).

We claim the following:
i): f 1n (f + Uf + U

2f + :::+ Un�1f)g converges in Lp if f 2 (I � U)(Lp)
ii) ff 2 Lp : f 1n (f + Uf + U

2f + :::+ Un�1f)g converges in Lpg is a closed

subspace of Lp

iii) f � g belongs to the closed subspace in ii)
iv) g belongs to the closed subspace in ii)
These facts imply that f belongs to the closed subspace in ii) which �nishes

the proof.
Proof of i): if f = h�Uh then 1

n (f+Uf+U
2f+:::+Un�1f) = 1

n (h�U
nh)!

0 by hypothesis.
Proof of ii): this is proved along the same lines as the case p = 2: The

hypothesis: supfkUnk : n � 0g <1 is needed.
Proof of iii): f�g is the weak limit of f� 1

nk
(f+Uf+U2f+ :::+Unk�1f) =

f � fk and we have seen that the function belongs to the range of I �U . By i)
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f�fk is in the subspace in ii). Since the weak closure of a convex set (hence that
of a linear subspace) coincides with the norm closure we see that f � g belongs
to the closed subspace in ii). Finally we prove iv) by showing that Ug = g; this
would imply that 1n (g+Ug+U

2g+:::+Un�1g) = g 8n thus completing the proof.
We have U( 1nk (f+Uf+U

2f+:::+Unk�1f))� 1
nk
(f+Uf+U2f+:::+Unk�1f) =

1
nk
(f � Unkf) ! 0 in the norm. Since the �rst term tends to Ug weakly and

the second term tends to g weakly we must have Ug = g.

APPENDIX: Connections with Number Theory

Let 0 < x < 1; x irrational. De�ne a1 = [ 1x ] and T (x) =
1
x � [

1
x ]. T is

the Gauss transformation de�ned earlier. Note that 0 < T (x) < 1. Now let
a2 = [ 1Tx ] since T (x) 6= 0. Then x = 1

a1+T (x)
and x = 1

a1+
1

a2+T
2(x)

. also

T 2(x) 6= 0 since x is irrational. Proceeding this way we get an in�nite sequence
of positive integers fang: [If x is rational then T kx = 0 for some k and we get
a �nite sequence of integers fa1; a2; :::; akg]:
For any �nite or in�nite sequence of positive numbers ftng we de�ne [t1; t2; :::; tn] =

[t1; t2; :::; tn�2; tn�1 +
1
tn
] with [t1] = 1

t1
. [ Thus [t1; t2] = (t1 +

1
t2
)�1 = 1

t1+
1
t2

and so on].

Theorem
x = [a1; a2; :::; an + T

n(x)] for each n for any x 2 (0; 1) where an = [ 1
Tn�1x ].

Lemma
[t1; t2; :::; tn] = [t1; [t2; :::; tn]

�1]; n = 2; 3; :::.

Proof of the lemma: For n = 2 [t2]�1 = t2 and the result follows. Suppose the
result holds for n for all choices of t0is. Then [t1; t2; :::; tn+1] = [t1; t2; :::; tn�1; tn+
1

tn+1
] = [t1; [t2; :::; tn +

1
tn+1

]�1] = [t1; [t2; :::; tn+1]
�1]:

Proof of the theorem: for n = 1 we have [a1 + Tx] = 1
[ 1x ]+(

1
x�[

1
x ])

= x.

Suppose the result holds for n and any irrational number x. Note that Tx is also
an irrational number. We have [a1; a2; :::; an+1 + Tn+1(x)] = [a1; [a2; :::; an+1 +
Tn+1(x)]�1] (by the lemma)
= [a1; (Tx)

�1] ( by the induction hypothesis with Tx in place of x)
= 1

a1+Tx
= x:

Now we �x a positive integer N and de�ne p0 = 0; p1 = 1; q0 = 1; q1 =

a1; pn = anpn�1 + pn�2; qn = anqn�1 + qn�2 for 2 � n < N and pN = (aN +
TNx)pN�1 + pN�2; qN = (aN + T

Nx)qN�1 + qN�2.

Theorem
[a1; a2; :::; an] =

pn
qn
for 1 � n < N and [a1; a2; :::; aN + TNx](= x) = pN

qN
.
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Proof: the identity in the �rst part can be stated without any reference to
the irrational number x: We start with positive numbers a1; a2; :::; aN ; de�ne
pn; qn(1 � k � N) as above and prove that [a1; a2; :::; an] =

pn
qn
for 1 � n < N .

We have [a1] = 1
a1
= p1

q1
. Suppose the result holds for all choices of a0ks when

n � N � 2. Then [a1; a2; :::; an+1] = [a1; a2; a3; :::; an�1; an +
1

an+1
] = ( rnsn )

where rn = (an + 1
an+1

)pn�1 + pn�2; sn = (an +
1

an+1
)qn�1 + qn�2. Thus rn

sn
=

(an+
1

an+1
)pn�1+pn�2

(an+
1

an+1
)qn�1+qn�2

=
pn+

1
an+1

pn�1

qn+
1

an+1
qn�1

= an+1pn+pn�1
an+!qn+qn�1

= pn+1
qn+1

. It remains to show

that [a1; a2; :::; aN + TNx] = x.

The left side is
(aN�1+

1

aN+TNx
)pN�2+pN�3

(aN�1+
1

aN+TNx
)pN�2+pN�3

=
pN�1+

pN�2
aN+TNx

qN�1+
pqN�2

aN+TNx

= pN
qN
.

Theorem���x� pN�1
qN�1

��� � 1
q2N�1

� 1
(N�1)2 .

Proof: we begin by verifying that pnqn�1 � qnpn�1 = (�1)n�1; 1 � n � N .
For n = 1 we have pnqn�1 � qnpn�1 = 1 = (�1)1�1: Suppose the identity
holds for some n < N � 1. Then pn+1qn � qn+1pn = (an+1pn + pn�1)qn �
(an+1qn + qn�1)pn = pn�1qn � qn�1pn = �(pnqn�1 � qnpn�1) = (�1)n. It
remains to verify that the identity holds of n = N . We have pNqN�1�qNpN�1 =
f(aN+TNx)pN�1+pN�2gqN�1�f(aN+TNx)qN�1+qN�2gpN�1 = pN�2qN�1�
qN�2pN�1 = (�1)N�1:
We now have pN

qN
� pN�1

qN�1
= (�1)N�1

qNqN�1
and pN

qN
= x so

���x� pN�1
qN�1

��� = 1
qNqN�1

.

To show that qN � qN�1 just note that qN = (aN + TNx)qN�1 + qN�2 �
aNqN�1 � qN�1. Finally we show that 1 � q1 < q2 < ::: < qN�1 < qN
(so that qN�1 � N � 1 and the theorem follows from this). We have qn+1 =
an+1qn + qn�1 � qn + qn�1 > qn.

Corollary
fcn : n = 1; 2; :::g is dense in S1 if c 2 S1 is not a root of unity.

[ We have already proved this; what follows is an alternative proof]

Proof: let c = e2�i�; � 2 [0; 1). Then � is irrational. De�ne pn and qn as
above with x = �.

pn; qn are positive integers such that
����� pn

qn

��� < 1
q2n
. Also pn; qn ! 1 and

fp2nq2n g is increasing. [ p2nq2n�1 � q2np2n�1 = (�1)
2n�1 = �1 and p2n�1q2n�2 �

q2n�1p2n�2 = (�1)2n�2 = 1 so p2n
q2n

� p2n�2
q2n�2

= � 1
q2n�1q2n

+ 1
q2n�1q2n�2

. Hence
p2n
q2n

� p2n�2
q2n�2

= q2n�q2n�2
q2nq2n�1q2n�2

� 0].
Let (a; b) � (0; 1) and N = [ a

q2n��p2n ] +1: Let x = N(q2n� � p2n). Clearly
x > a. We also have x � a + q2n� � p2n < b for n su¢ ciently large because
q2n�� p2n < 1

q2n
. Thus any open interval (a; b) � (0; 1) intersects fk�+ j : k �
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1; j 2 Zg. In other words fk�+j : k � 1; j 2 Zg is dense in [0; 1]. Now if ei2�t 2
S1 with 0 � t � 1 then

��ei2�t � ck�� = ��ei2�t � e2�ik�e2�in�� � 2� jt� (k�+ n)j
for any integer n. We can choose k � 1 and n such that

��ei2�t � ck�� < �.
[ The fact that fk� + j : k � 1; j 2 Zg is dense in [0; 1] is also proved in

Measure Theory by Halmos].

We now prove ergodicity of T under Gauss transformation.

For given positive integers a1; a2; ::: let �a1;a2;:::;aN = fx : ak(x) = ak; 1 �
k � Ng where ak(x) = [ 1

Tn�1(x) ]. Let pn; qn; 1 � n < N be de�ned as above
and let pN = aNpN�1 + pN�2; qN = aNqN�1 + qN�2. We claim that (modulo a
set of measure 0), �a1;a2;:::;aN = [

pN
qN
; pN+pN�1
qN+qN�1

) if N is even and �a1;a2;:::;aN =

[pN+pN�1
qN+qN�1

; pNqN ) if N is odd. To see this let fa1;a2;:::;aN (t) = [a1; a2; :::; aN + t].
This is a monotone function and its range is the interval with end points pNqN and
pN+pN�1
qN+qN�1

. Clearly pN
qN

< pN+pN�1
qN+qN�1

if N is even and the reverse inequality holds
if N is even. This proves our claim. For �xed N these intervals form a partition
of [0; 1) and the lengths of the intervals in the N � th partition tend to 0 as

N ! 1. [
���pN+pN�1
qN+qN�1

� pN
qN

��� = 1
(qN+qN�1)qN

� 1
N(2N�1) ]. It follows from this

that the sets of the type �a1;a2;:::;aN generate the Borel sigma �eld of [0; 1). [ If
(a; b) is an open interval and ! 2 (a; b) then we can choose N so large that the
interval around ! with length 2

N(2N�1) is contained in (a; b). For this N there
exist a1; a2; :::; aN such that ! 2 �a1;a2;:::;aN since these sets form a partition
of 
. Clearly �a1;a2;:::;aN � (a; b). It follows that (a; b) is a union of sets of the
type �a1;a2;:::;aN . Thus the sigma �eld generated by sets of the type �a1;a2;:::;aN
contains all open intervals].
Ergodicity of T : We write f for fa1;a2;:::;aN (for �xed a

0
is) and� for�a1;a2;:::;aN .

The length of � is �(f(1) � f(0)). The interval fx : � � TNx < �g \ �
has length �(f(�) � f(�)) (plus sign if N is even and minus sign otherwise).
This follows from the fact that x = [a1; a2; :::; aN + TN (x)] and the conti-
nuity and strict monotonicity of f . Hence m(T�N [�; �)j�) = f(�)�f(�)

f(1)�f(0) =

(� � �) qN (qN+qN�1)
(qN+�qN�1)(qN+�qN�1)

using the fact that f(t) = pN+tpN�1
qN+tqN�1

. [ Note that
[a1; a2; :::; aN + t] is obtained by replacing aN by aN + t in [a1; a2; :::; aN ] =
aNpN�1+qpN�2
aNqN�1+qN�2

. Hence f(t) = aNpN�1+pN�2+tpN�1
aNqN�1+qN�2+tqN�1

= pN+tpN�1
qN+tqN�1

].

Noting that qN�1 � qN and hence 12 �
qN (qN+qN�1)

(qN+�qN�1)(qN+�qN�1)
� 2 we see that

1
2 (���) � m(T�N [�; �)j�) � 2(���). Hence 12m(A) � m(T�NAj�) � 2m(A)
for any Borel set A: If P denotes the Gauss measure (dP = 1

(ln 2)(1+x) ) we

get c1m(A) � P (T�NAj�) � c2m(A) for suitable c1; c2 2 (0;1) ( because
the density of P is bounded above and below). If A is invariant this gives
c1m(A)P (�) � P (A\�) � c2m(A)P (�). Since intervals of the type� generate
the Borel sigma �eld we can replace � by any Borel set. [ This requires the
� � � theorem. (c.f. Theorem 3.2 of Probability and Measure By Billingsley)].
If P (A) > 0 then m(A) > 0 and we can take � = Ac to get P (Ac) = 0.
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Corollary:

(a1(x)a2(x):::(an(x))
1=n !

1Y
k=1

(1 + 1
k2+2k )

(ln k)=(ln 2) as n ! 1 for almost

all x 2 (0; 1):
Remark: the limit is called Khinchine�s constant. Is it rational or irrational?

Algebraic or transcendental? The answers are not known!

Proof: let f(x) = ln a1(x). Then f(Tn(x)) = ln an+1(x) and the ergodic

theorem gives (a1(x)a2(x):::(an(x))1=n = e

1
n

nX
j=1

ln aj(x)

! e

Z
ln a1(x)dP (x)

=

e

Z
ln[ 1x ]dP (x)

( here [t] is the greatest integer not exceeding t). Now
Z
ln[ 1x ]dP (x) =

1X
m=1

lnm
ln 2

1=mZ
1=(m+1)

1
1+xdx =

1X
m=1

lnm
ln 2 [ln(1 +

1
m ) � ln(1 +

1
m+1 )] =

1X
m=1

lnm
ln 2 ln(1 +

1
m2+m ). This completes the proof.

Remark: as a further application of ergodic theory to number theory it can

be shown that 1
n ln

���x� pN�1
qN�1

���! � �2

6 ln(2) a.e..

Theorem
mfx 2 [0; 1) : Tn(x) � ag ! P ([0; a]) for all a:

[ Equivalently
Z
f(Tn)dm!

Z
fdP for every bounded continuous function

f on [0; 1)]
Proof: this requires several steps. We �rst prove that T is a mixing trans-

formation in the sense P (T�nA \ B)! P (A)P (B) for any two sets A;B 2 F :
[ This is stronger than ergodicity; by taking B = A where A is invariant we see
that mixing implies ergodicity]. To prove that T is mixing we prove that the
following 0�1 law holds: let Gn = �fan; an+1; :::g where an(x) is the n�th inte-

ger in the continued fraction expansion of x. Let G1 =
1\
n=1

Gn. Then for every

A set in G1 we have P (A) = 0 or1. For this note that A 2 Gn for each n. Fix n:
There exists a set B in the Borel sigma �eld of R1 such that A = T�nB (why?).
Hence P (A) = P (T�n(B)) = P (B) � 2P (T�NBj�N ) ( by the third last line
in the proof of ergodicity of T ). Thus P (A) � 2P (Aj�N ). Suppose P (A) > 0.
Then the inequality P (A)P (�N ) � 2P (A\�N ) for all intervals of the type �N
shows that P (A)P (B) � 2P (A \ B) for all A and B. Taking B = Ac we get
P (Bc) = 0 or P (A) = 1. This �nishes the proof of the fact that G1 is trivial
with respect to P . Now let Yn = P (AjGn)�P (A) where A2 F is arbitrary. By
Martingale Convergence Theorem it follows that Yn ! P (AjG1) � P (A) = 0
almost surely and in L1 since A is independent of G1. For any B2 F we have
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T�nB 2 Gn and hence
Z

T�n(B)

YndP (= P (A\T�n(B))�P (A)P (T�n(B)))! 0

which says P (A \ T�n(B))� P (A)P (B) ! 0. Thus T is mixing. To complete

the proof we note that mfx 2 [0; 1) : Tn(x) � ag =
Z

T�nA

ln(2)(1 + x)dP (x)

where A = [0; a]: It su¢ ces to show that
Z

T�nA

f(x)dP (x) ! P (A)

Z
fdP for

any bounded measurable function f . [ Because ln(2)(1 + x) is bounded and

measurable and
Z
ln(2)(1 + x)dP = 1]. By simple function approximation it

su¢ ces to prove this when f is the indicator function of a measurable set B. We
have to show that P (B\T�n(A))! P (A)P (B) which is precisely the statement
that T is mixing.

Remark
The following general result follows from above arguments:

Theorem
Let (
; P;F ; T ) be a DS. Let Gn be the sigma �eld fT�n(A) : A 2 Fg. Then

Gn+1 � Gn for all n. If the sigma �eld G =
1\
n=1

Gn is trivial ( in the sense every

set in this sigma �eld has probability 0 or 1 then T is mixing.
Details of the proof are left to the reader.

Further properties of continued fraction expansions:

We have ! =
pN+Tn!pN�1
qN+Tn!pN�1

and
���! � pN

qN

��� = 1
q
Nf 1

TN!
qN+qN�1)

. Using the

fact that aN+1(!) = [ 1
TN!

] we get aN+1 � 1
TN!

< aN+1 + 1 and hence
1

q
Nf 1

TN!
qN+qN�1)

� 1
qNfaN+1qN+qN�1)

and 1
q
Nf 1

TN!
qN+qN�1)

> 1
qNffaN+1+1)qN+qN�1)

=

1
qNfqN+1+qN )

. Thus 1
qNfqN+1+qN )

<
���! � pN

qN

��� � 1
qNfaN+1qN+qN�1)

. We now show

that���log !
pN (!)=qN (!)

��� � 1
2N�2 . For N = 1

���log !
pN (!)=qN (!)

��� = jlogf!a1(!)gj =��logf![ 1! ]g�� = (logf![ 1! ]g)
�1. Considering the cases ! > 1=2 and ! � 1=2

we can see easily that the inequality holds in this case. From the de�nition
of the sequences fpng; fqng we see that pn � 2(n�2)=2; qn � 2(n�2)=2(n =

2; 3; :::). It follows, by induction, that
��� !
pN (!)=qN (!)

� 1
��� � p

2
2N�1 (n = 2; 3; :::). [��� !

pN (!)=qN (!)
� 1
��� = j! � pN (!)=qN (!)j 1

pN (!)=qN (!)
� 1

qNfaN+1qN+qN�1)
1

pN (!)=qN (!)

= 1
faN+1qN+qN�1)

1
pN (!)

� 1

f2(N�2)=2
+2

(N�3)=2g2(N�2)=2 �
p
2

2N�1 . This gives���log !
pN (!)=qN (!)

��� � p
2

2N�1�
p
2
. [ Indeed it is easy to check that jt� 1j � �

1+� )
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jlog tj � � ( : consider the cases t < 1 and t � 1 separately). Here we take

� =
p
2

2N�1�
p
2
. We now use the inequality

���log !
pN (!)=qN (!)

��� � p
2

2N�1�
p
2
to prove

the following

Theorem
1
N log qN !

�2

12 log 2 a.s..

Proof: claim: 1
qN

=
NY
k=1

[ak; ak+1; :::; aN ]. For this we �rst prove that

pn+1(!) = qn(T!). If we denote qn(T!) by rn(!) we get rn(!) = an(T!)qn�1(T!)+
qn�2(T!) = an+1(!)rn�1(!)+rn�2(!):We also have pn+1(!) = an+1(!)pn(!)+
pn�1(!). An inspection of these equations makes it clear that the equation
pn+1(!) = qn(T!) holds for all n provided it holds for n = 0 and 1. Since
pn+1(!) = qn(T!) = 1 for n = 1 and pn+1(!) = qn(T!) = a2(!) for n = 1 we

have �nished the proof of pn+1(!) = qn(T!). It follows that
NY
k=1

pN+1�k(T
k�1!)

qN+1�k(Tk�1!)

is a telescopic product and its value is 1
qN (!)

. But the product here is nothing

but
NY
k=1

[ak; ak+1; :::; aN ] and so we have proved the claim. Using the inequality���log !
pN (!)=qN (!)

��� � p
2

2N�1�
p
2
with ! changed to T k�1(!) we get��log(T k�1!)� log[ak; ak+1; :::; aN ]�� � p

2
2N�k�1�

p
2
. Now 1

N log qN = �
1
N

NX
k=1

log[ak; ak+1; :::; aN ] =

� 1
N

NX
k=1

log T k�1(!)+�N where �N = � 1
N

NX
k=1

p
2

2N�k�1�
p
2
. By the Ergodic The-

orem the �rst term converges to � 1
log 2

1Z
0

log x 1
1+xdx =

1
log 2

1Z
0

log(1 + x) 1xdx [

Note that jlog xj log(1 + x) � x jlog xj ! 0 as x! 0 and log x log(1 + x)! 0 as

x! 1]. Expanding log(1+x) as x�x2=2+x3=3+ ::: we get 1
log 2

1Z
0

log x 1
1+xdx =

1
log 2 [1�

1
22 +

1
32 + :::] =

�2

12 log 2 . Since �n ! 0 we can conclude that 1
N log qN !

�2

12 log 2 :

Theorem
1
n log

���! � pn(!)
qn(!)

���! � �2

6 log 2 as n!1:

Proof: recall that 1
qNfqN+1+qNg <

���! � pN
qN

��� � 1
qNqN+1

. Hence 1n log
���! � pn(!)

qn(!)

��� �
1
n log

1
qNqN+!
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= � 1
n log qn�

1
n log qN+1 ! � �2

6 log 2 and
1
n log

���! � pn(!)
qn(!)

��� � 1
n log

1
qNfqN+1+qNg �

1
n log

1
2qNqN+1

! � �2

6 log 2 .

Remark:
���! � pn(!)

qn(!)

��� < en[��
�2

6 log 2 ] for n su¢ ciently large. Thus the rational

numbers pn(!)qn(!)
converge to ! exponentially fast.

[ END OF APPENDIX]

Mixing transformations

Let (
;F ; P; T ) be a dynamical system. We say T is mixing if P (T�n(A) \
B) ! P (A)P (B) as n ! 1 for any two measurable sets A and B. We say T

is weakly mixing if 1n

nX
k=1

��P (T�k(A) \B)� P (A)P (B)��! 0 as n!1 for any

two measurable sets A and B.

Remark: �mixing�is also called �strong-mixing�.

Theorem

a) T is ergodic i¤ 1
n

nX
k=1

P (T�k(A)\B)! P (A)P (B) for any two measurable

sets A and B.
b) Weak mixing implies ergodic
c) Mixing implies weak mixing
If any of the properties above hold for A and B in a generating �eld they

hold for all A and B:

Proof: for the �if�part of a) take A to be an invariant set and B = A: This
gives P (A) = P 2(A) and hence T is ergodic. Now suppose T is ergodic. By the

Ergodic Theorem 1
n

nX
k=1

IA(T
k(x)) !

Z
IAdP = P (A) a.e. and in L1. HenceZ

B

1
n

nX
k=1

IA(T
k(x))dP ! P (A)P (B) and the left side is 1

n

nX
k=1

P (T�k(A) \ B).

This proves a).
b) is obvious from a).
c) is elementary.
The last part of the theorem is proved by straightforward arguments using

that fact that if F0 is a �eld that generates F then, given A 2 F and � > 0
there exists B 2 F0 such that P (A�B) < �. The details are left to the

reader.

26



Theorem

a) T is ergodic i¤ 1
n

nX
k=1

< Ukf; g >!< f; 1 >< 1; g > for all f; g 2 L2

where Uf = f � T and <;> is the inner product in L2:

b) T is weak mixing i¤ 1
n

nX
k=1

��< Ukf; g > � < f; 1 >< 1; g >
�� ! 0 for all

f; g 2 L2

i¤ 1
n

nX
k=1

��< Ukf; f > � < f; 1 >< 1; f >
��! 0 for all f 2 L2

i¤ 1
n

nX
k=1

��< Ukf; f > � < f; 1 >< 1; f >
��2 ! 0 for all f 2 L2

c) T is mixing i¤ < Ukf; g >!< f; 1 >< 1; g > for all f; g 2 L2
i¤ < Ukf; f >!< f; 1 >< 1; f > for all f 2 L2

Proof: �if� part of a) follows by taking f and g to be indicators. If T is
ergodic then

1
n

nX
k=1

Ukf !< f; 1 > in L1. Multiply by g and integrate to get 1
n

nX
k=1

<

Ukf; g >!< f; 1 >< 1; g > :

Next we show that T is weak mixing i¤ 1
n

nX
k=1

��< Ukf; g > � < f; 1 >< 1; g >
��!

0 for all f; g 2 L2:

If T is weak mixing then 1
n

nX
k=1

��< Ukf; g > � < f; 1 >< 1; g >
�� ! 0 when-

ever f and g are indicators. It follows easily that the same is true when f and g

are simple functions. The general case follow from the estimate 1n

nX
k=1

��< Ukf; g > � < f; 1 >< 1; g >
�� �

1
n

nX
k=1

["2 + "2] = 2"2 if kfk2 < " and kgk2 < ". The converse part is trivial.

Now suppose this property holds when f = g. To prove that it holds for

all f and g let Mf = fg 2 L2 : 1
n

nX
k=1

��< Ukf; g > � < f; 1 >< 1; g >
�� ! 0g.

It is easy to see (using triangle inequality as in the proof of b)) that this is a
closed subspace of L2: Note that 1 2 Mf and f 2 Mf (by hypothesis). Also
g 2 Mf ) Ug 2 Mf . Let h 2 M?

f . But this implies < Ukf; h > � < f; 1 ><

1; h >= 0 for all k [ because Ukf 2 Mf and 1 2 Mf ] and so h 2 Mf by
de�nition of Mf . Thus h 2M?

f \Mf = f0g. This proves that Mf = L2 and so

1
n

nX
k=1

��< Ukf; g > � < f; 1 >< 1; g >
��! 0 8f; g 2 L2.
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If fang is a bounded sequence of real (or complex) numbers then 1
n

nX
k=1

jakj !

0 i¤ 1
n

nX
k=1

jakj2 ! 0. [ See Appendix below]. This completes b) and c) is proved

similarly.

Remark: a m.p.t. T may be ergodic without T 2 being so: let 
 = f�1; 1g
with the power set as the sigma �led and the uniform measure P . Let T (1) = �1
and T (�1) = 1. T is clearly ergodic but f1g is an invariant set for T 2 with
measure 1

2 :

De�nition: a m.p.t. is totally ergodic if Tn is ergodic for n = 1; 2; :::.
Theorem
A weak mixing transformation is totally ergodic.

Proof: given: 1
n

n�1X
k=0

��P (T�k(A) \B)� P (A)P (B)��! 0 as n!1. If m 2 N

and T�m(A) = A then we get
m�1X
k=0

��P (T�k(A) \A)� P (A)P (A)�� = 0. [ Split
the sum over 0 � k < n into 0 � k < m;m � k < 2m; ::: taking n to be a
multiple of m]. In particular P (T�0(A)\A)�P (A)P (A) = 0 so P (A) = P 2(A).
Example: let � be an irrational number in (0; 1) and de�ne T on [0; 1) with

the Lebesgue measure by Tx = x+�mod(1). Then T is totally ergodic but not
weak mixing.
We already know that Tnx = x+ n�mod(1) is ergodic. The fact that T is

not weak mixing will be proved later. [ See the remark after the �rst theorem
that follows the appendix below].

APPENDIX
A THEOREM ON CESARO CONVERGENCE

Theorem
Let fang � R be bounded and 1 < p <1. Then the following are equivalent:

a) 1
n

nX
k=1

jakj ! 0

b) there exists A � N such that lim
n=2A;n!1

an = 0 and
#fA\f1;2;:::;ng)

n ! 0 as

n!1
c) 1

n

nX
k=1

jakjp ! 0
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Proof: it su¢ ces to show that a) and b) are equivalent. Suppose 1
n

nX
k=1

jakj !

0. For k = 1; 2; ::: let Ik = fn � 1 : janj � 1
kg. Claim:

#fIk\[1;n]g
n ! 0 as n!1

for each k. Indeed, this follows from the inequality 1
n

nX
j=1

jaj j � #fIk\[1;n]g
nk .

There exist integers n0 < n1 < ::: such that n � nk implies
#fIk+1\[1;n]g

n < 1
k+1 .

Let I =
1[
k=0

fIk+1 \ [nk; nk+1)g. Let nk � n < nk+1. Then I \ [1; n] � fIk \

[1; nk]g [ fIk+1 \ [1; n]g. [ Let m 2 I \ [1; n]. Then m 2 Ir+1 \ [nr; nr+1)
for some r. Since nr � m � n < nk+1 we have r � k. If r = k then m 2
Ir+1 \ [nr; nr+1) = Ik+1 \ [1; n]. If r < k then r + 1 � k and m 2 Ir+1 � Ik.
Remains to show that m � nk. But m < nr+1 � nkso we are done]. Hence
#fI\[1;n]g

n � #fIk\[1;nk]g
n + #fIk+1\[1;n]g

n < 1
k +

1
k+1 �

1
k +

1
k+1 if n � nk. We

have proved that #fI\[0;n)gn ! 0 as n!1. If n > nk and n =2 I then n =2 Ik+1
(if n > nk and n 2 Ik+1 then there exists � � k such that n� � n < n�+1 and
n 2 Ik+1 � I�+1 so n 2 I�+1 \ [n�; n�+1) � I). Thus janj < 1

k+1 for n > nk,
n =2 I completing the proof of a) implies b). For the converse part let janj � C
and let � > 0. There exists n� such that janj < � if n > n� and n =2 I. Also
there exists m� such that

#fI\[0;n)g
n < � if n > m�. For n > maxfn�;m�g we

have 1
n

n�1X
k=0

jakj < �+ �C.

END OF APPENDIX

Theorem
Let (
;F ; P; T ) be a DS. Then the following are equivalent:
1) T is weak mixing
2) T � T is ergodic
3)T � T is weak mixing

Proof: 1) implies 3): it su¢ ces to show that there is a set S � N such that
#(S\[1;n])

n ! 1 and lim
n2S

(P�P )((T�T )�n(A�B)\(C�D))! P (A)P (B)P (C)P (D)

for all measurable sets A;B;C;D: By 1) there exist sets S1; S2 � N such that
#(Si\[1;n])

n ! 1(i = 1; 2) and lim
n2S1

P (T�nA�B)! P (A)P (B) and lim
n2S2

P (T�nC�
D)) ! P (C)P (D). But (P � P )((T � T )�n(A � B) \ (C �D)) = P (T�nA �
B)P (T�nC �D)). To complete the proof of 1) implies 3) we only have to take
S = S1 \ S2. [ Note that #(S

c\[1;n])
n � #(Sc1\[1;n])

n +
#(Sc2\[1;n])

n ! 0].

3) certainly implies 2). We now prove that 2) implies 1). Consider 1n

nX
k=1

fP (T�kA\

B)� P (A)P (B)g2
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= 1
n

nX
k=1

P 2(T�kA \B) + P 2(A)P 2(B)� f 2n
nX
k=1

P (T�kA \B)gP (A)P (B)g.

In the last term we write 1
n

nX
k=1

P (T�kA\B) = 1
n

nX
k=1

(P�P )((T�T )�k(A�
)\

(B�
)! P (A)P (B). Also 1
n

nX
k=1

P 2(T�kA\B) = 1
n

nX
k=1

(P�P )((T�T )�k(A�

A) \ (B � B)) ! P 2(A)P 2(B). Hence 1
n

nX
k=1

fP (T�kA \ B) � P (A)P (B)g2 !

P 2(A)P 2(B) + P 2(A)P 2(B)� 2P 2(A)P 2(B) = 0. This completes the proof.
We now study properties of an ergodic m.p. transformation T related to the

spectrum of the operator U : L2 ! L2 de�ned by Uf(!) = f(T (!)). In this
discussion we take the scalar �eld to be the �eld of complex numbers.
An eigen function for T with eigen value � is a function f in L2nf0g such

that f � T = �f . In other words it is eigen function for the operator U .

Lemma
j�j = 1 and jf j is a constant (a.e.)

Proof: taking L2 norms in f � T = �f we get j�j = 1. Hence jf j = j�f j =
jf � T j = jf j � T . Thus jf j is invariant, hence constant a.e..

Lemma
Eigen functions corresponding to di¤erent eigen values are orthogonal.

Proof: this is true for any linear isometry from H into itself: Uf1 =
�1f1; Uf2 = �2f2; f1 6= 0; f2 6= 0; �1 6= �2 )< f1; f2 >=< Uf1; Uf2 >=
�1��2 < f1; f2 > )< f1; f2 > = 0 because �1��2 = �1

�2
6= 0.

Lemma
The eigen space corresponding to a given eigen value is one dimensional.

Proof: let Uf = �f; Ug = �g; f 6= 0 and g 6= 0. Then f�T
f�T =

�f
�g and hence

f
g is invariant. It follows that f = cg for some constant c. [Recall that jgj is a
constant. Hence f! : g(!) = 0g is a null set].

Lemma
Eigen values of T form a subgroup of the multiplicative group S1

Proof: this is obvious. [Just remember that jf j is a constant for any eigen
function f . If f and g are two eigen functions then fg 6= 0].

Theorem
For a DS (
;F ; P; T ) where T is i.m.p the following are equivalent:
a) T is weak mixing
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b) 1 is the only eigen value of the operator U on L2 de�ned by Uf = f � T
and the eigen space corresponding to this eigen value is one dimensional.

Remark: if Tz = az on S1 where a is not a root of unity then T is ergodic,
but it is not weak mixing. Indeed Uf = af where f(z) = z for all z.

The proof requires the following theorem from Functional Analysis:

Theorem [ Spectral Theorem for unitary operators]
If U is a unitary operator on a complex Hilbert space H: If x 2 H then there

is a unique complex Borel measure �x on S
1 such that < Unx; x >=

Z
znd�x

8n 2 Z. Further �x is a continuous measure if U has no eigen values.
[ For the second part we refer to Taylor�s book on Functional Analysis; see

Theorem 6.5-E, p. 353]
Assuming this theorem we prove our theorem on weak mixing transforma-

tions as follows:

Proof of a) implies b): let f�T = �f; f 6= 0. We have 1n
nX
k=1

��< Ukf; f > � < f; 1 >< 1; f >
��!

0. We claim that j�j = 1 and, if � 6= 1 then < f; 1 >= 0. This follows imme-

diately from kf � Tk = j�j kfk ;
Z
f � T = �

Z
f and T is m.p.. Suppose � 6= 1:

Then
��< Ukf; f > � < f; 1 >< 1; f >

�� =< f; f > for all k so < f; f >= 0, a
contradiction. If � = 1 then f is a constant since f is an invariant function and
T is ergodic.

b) implies a): we have to prove that 1n

nX
k=1

��< Ukg; g > � < g; 1 >< 1; g >
��2 !

0 for all g 2 L2. Let f = g �
R
g so < f; 1 >= 0. In this case we show that

1
n

nX
k=1

��< Ukf; f >
��2 ! 0. A simple calculation shows that 1n

nX
k=1

��< Ukf; f >
��2 =

1
n

nX
k=1

��< Ukg; g > � < g; 1 >< 1; g >
��2 and the proof would be complete. By

the Spectral Theorem this reduces to 1
n

nX
k=1

����Z �kd�f

����2 ! 0. Since f is orthog-

onal to the eigen functions of U it follows that �f is a continuous measure.

We now prove that 1
n

nX
k=1

����Z �kd�

����2 ! 0 for any continuous measure � on S1:

For this we may suppose that � is a continuous positive measure. By Fubini�s

Theorem 1
n

nX
k=1

����Z �kd�

����2 = 1
n

nX
k=1

(

Z
�kd�)(

Z
��kd�) =

Z Z
1
n

nX
k=1

�k��k(d��

d�)(�; �). Now for � 6= � we have 1
n

nX
k=1

�k��j = 1
n

(�� )
n+1��

�
�
� �1

! 0. Since
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(� � �)f(�; �) 2 S1 � S1 : � = �g = 0 we see that 1
n

nX
k=1

����Z �kd�

����2 ! 0. [

Dominated Convergence Theorem can be applied because

����� 1n
nX
k=1

�k��k

����� � 1].
Theorem
Conditions a) and b) of previous theorem are also equivalent to:
c) T � T is ergodic on (
;F ; P )� (
;F ; P )

Proof: (it is trivial to check that T � T is m.p.). Let T be weak mixing.
To prove c) it su¢ ces to show that (P � P )((T � T )�n(A � B) \ (C �D))

c!
P (A)P (B)P (C)P (D) for all A;B;C;D 2 F : ( c! stands for Cesaro conver-
gence). This is true by an immediate application of the theorem on Cesaro
convergence in the Appendix above.
[ If A � N such that lim

n=2A;n!1
jan � aj = 0 and lim

n=2A;n!1
jbn � bj = 0 where

cardfA\f1;2;:::;ng)
n ! 0 as n ! 1 then lim

n=2A;n!1
janbn � abj = 0. Of course

union of two sets with the property cardfA\f1;2;:::;ng)
n ! 0 also has this property,

so the same set A can be used for fang and fbng].
Now suppose c) holds. Let Uf = �f; f 6= 0. Then F (x; y) = f(x) �f(y)

de�nes an eigen function of U�U with eigen value 1 (i.e. an invariant function).
[(U � U)F (x; y) = F (Tx; Ty) = f(T (x) �f(Ty) = �f(x)�� �f(y) = F (x; y) because

j�j = 1]. Hence f(x)
�
f(y) is a.e. constant, say c. Now Fubini�s Theorem implies

that for almost all y, hence for at least one y, f(x)
�
f(y) = c. Thus f is a constant

and hence � = 1. We have proved that b) holds. The proof is complete.

Example: The rotation Tz = az ( a not a root of unity) on S1 is ergodic but
not weak mixing. This is clear because a is an eigen value other than 1 ( with
the eigen function f(z) = z).
It also follows from the equivalence of a) and c) that T � T is not ergodic

even though T is!

Theorem
Let (
;F ; P; T ) be an dynamical system with T ergodic and (
0;F 0; P 0; T 0)

be another dynamical system with T 0 also ergodic. Let Uf = f � T on L2(P )
and V g = g �T 0 on L2(P 0). If T �T 0 is ergodic then U and V have no common
eigen values other than 1.

Proof: if Uf = �f and V g = �g (� 6= 1; f 6= 0; g 6= 0) then (U�V )F (x; y) =

F (x; y) where F (x; y) = f(x)
�
g(y). If T � T 0 is ergodic it would follow that

F is constant. But then f and g are constants by Fubini�s Theorem and this
contradicts the fact � 6= 1. Thus T � T 0 not is ergodic.
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Remark: the converse of this is also true. We omit the proof.

Application to Markov Chain Theory

Let P = ((pij)) be an N � N stochastic matrix. Let � be a probability
vector with �P = P . Let S = f1; 2:::; Ng. There exists a probability measure Q
on 
 = S � S � ::: with the sigma �eld F generated by cylinder sets such that
Qf! : !1 = i1; !2 = i2; :::; !j = ijg = �i1pi1i2 ; :::; pij�1ij . Let T be the shift
map (T!)n = !n+1.

Let qij = lim
n!1

1
n

n�1X
k=0

p
(k)
ij . To see that this limit exists for all i and j we �rst

apply Birkho¤�s ergodic theorem with f = IB(B � f1; 2; :::; Ng) to see that

lim
n!1

1
n

n�1X
k=0

IT�k(B) exists a.e..and in L1. If A � f1; 2; :::; Ng we can integrate

over A to see that lim
n!1

1
n

n�1X
k=0

Q(T�k(B) \ A) exists. Now take A = f! : !0 =

ig; B = f! : !0 = jg to conclude that lim
n!1

1
n

n�1X
k=0

Qf! : w0 = i; !k = jg �

lim
n!1

1
n

n�1X
k=0

p
(k)
ij �i exists. We assume that �i > 0 for each i to conclude that qij

exists for all i and j. [Those states i with �i = 0 are irrelevant to the Markov
chain].

Theorem
T is m.p.. on (
;F ; Q). Also the following are equivalent:
a) T is ergodic
b) P is irreducible
c) qij is independent of i
d) qij > 0 for all i and j

Proof:
T is ergodic i¤

1
n

n�1X
k=0

Qf! : !1 = i1; !2 = i2; :::; !r = ir; !k+1 = j1; :::; !k+m = jmg !

Qf! : !1 = i1; !2 = i2; :::; !r = irgQf! : !k+1 = j1; :::; !k+m = jmg for

all choices of i0s and j0s: Note also that the limit of 1n

n�1X
k=0

Qf! : !1 = i1; !2 =

i2; :::; !r = ir; !k+1 = j1; :::; !k+m = jmg as n ! 1 always exists. [ The case
r = m = 1 was already discussed above and the limit in this case is qi1j1 ].
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These facts follow easily from the fact that cylinder sets generate F . If T is

ergodic then qij = �j :[ Indeed the limit is
Z
A

E(IB jI)=�i where I is the invariant

sigma �eld (which is trivial, in view of ergodicity). This says that the limit is
Q(B)Q(A)

�i
=

�i�j
�i

= �j . The matrixM = ((qij)) is a stochastic matrix such that

MP = PM =M and M2 =M . [ Recall that M = lim
n!1

1
n

n�1X
k=0

P k by de�nition.

To prove the last relation note that q(2)ij =
NX
l=0

qilqlj =
NX
l=0

qil lim
n!1

1
n

n�1X
k=0

p
(k)
lj

= lim
n!1

1
n

n�1X
k=0

NX
l=0

milp
(k)
lj = lim

n!1
1
n

n�1X
k=0

mij = mij. [ We used the fact that

MP k =M for each k].

We also have �M = � lim
n!1

1
n

n�1X
k=0

P k = lim
n!1

1
n

n�1X
k=0

� = � since �P k = �

for each k. We now prove a) implies b), i.e. if P is not irreducible then T is
not ergodic. Let A = f! : !0 2 Cg where C is a proper closed set of states.
Then 0 < Q(A) < 1. Since C is closed Q(AnT�1(A)) = 0. Since T is m.p.
this implies Q(A�T�1(A)) = 0. This implies that T is not ergodic. Next
we prove b) implies d). Let P be irreducible. Let C = fj : qij > 0g with i
�xed. This is a closed set. Indeed if qij > 0 and qik = 0 then i cannot lead to
j : 0 = qik � qijpjk (because M = MP ) which implies pjk = 0. By hypothesis
C = S. This proves b) implies d). Let us prove that d) implies c). Consider the
system of equations

X
j

qijtj = ti; i 2 S. Let m = maxfti : i 2 Sg. If ti < m

then tk =
X
j

qkjtj < m for all k (since tj � m for all j; ti < m and qij > 0 for

all i; j). This contradiction shows that ftig is necessarily constant. We apply
this fact to the columns of M . Any column fq1l; q2l; :::; qNlg of M is a solution
of above system of equations because M2 = M . Hence each column of M is
a constant. This means that qij is independent of i. Now suppose c) holds.

To prove that T is ergodic we have to show that 1
n

n�1X
k=0

Qf! : !1 = i1; !2 =

i2; :::; !r = ir; !k+1 = j1; :::; !k+m = jmg !
Qf! : !1 = i1; !2 = i2; :::; !r = irgQf! : !k+1 = j1; :::; !k+m = jmg for

all choices of i0s and j0s: We have Qf! : !1 = i1; !2 = i2; :::; !r = ir; !k+1 =

j1; :::; !k+m = jmg = �i1pi1i2pi2i3 :::pir�1irp
(k�r)
irj1

pj1j2pj2j3 :::pjm�1jm for k > r.

Thus 1
n

n�1X
k=0

Qf! : !1 = i1; !2 = i2; :::; !r = ir; !k+1 = j1; :::; !k+m = jmg =

pi1i2pi2i3 :::pir�1ir
1
n

n�1X
k=r+1

p
(k�r)
irj1

pj1j2 :::pjm�1jm
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! pi1i2pi2i3 :::pir�1irqirj1pj1pj2 :::pjm�1jm . Since qirj1 does not depend on ir
the limit is Qf! : !1 = i1; !2 = i2; :::; !r = irgQf! : !k+1 = j1; :::; !k+m = jmg
where we used the fact that qij = Qf! : !k+1 = jg. [ Since qij does not depend
on i it must be �i and each projection ! ! !k has distribution (�i)]. We have
proved that T is ergodic. Thus a) implies b) implies d) implies c) implies a).

Remark: the four conditions above are also equivalent to the following two
conditions:
e) Px = x has at most one solution upto a constant factor
f) xP = x has at most one solution upto a constant factor
We leave the details to the reader.

Theorem
With above notations T is mixing i¤ P is irreducible and aperiodic.
Proof: note that T is mixing i¤
lim
n!1

Qf! : !1 = i1; !2 = i2; :::; !r = ir; !n+1 = j1; :::; !n+m = jmg
= Qf! : !1 = i1; !2 = i2; :::; !r = irgQf! : !n+1 = j1; :::; !n+m = jmg for

all choices of i0s and j0s: If P is irreducible and aperiodic then lim
n!1

p
(n)
ij = �j

for all j. If P is irreducible and aperiodic then previous theorem shows that
qij > 0 for all i; j and that qij is independent of i.
To prove that T is mixing we have to show that Qf! : !1 = i1; !2 =

i2; :::; !r = ir; !k+1 = j1; :::; !k+m = jmg !
Qf! : !1 = i1; !2 = i2; :::; !r = irgQf! : !k+1 = j1; :::; !k+m = jmg as

k ! 1 for all choices of i0s and j0s: We have Qf! : !1 = i1; !2 = i2; :::; !r =

ik; !r+1 = j1; :::; !k+m = jmg = �i1pi1i2pi2i3 :::pik�1ikp
(k�r)
irj1

pj1pj2 :::pjm�1jm for
k > r. Thus Qf! : !1 = i1; !2 = i2; :::; !r = ir; !k+1 = j1; :::; !k+m = jmg !
�i1pi1i2pi2i3 :::pir�1ir�jipj1pj2 :::pjm�1jm = Qf! : !1 = i1; !2 = i2; :::; !r =
irgQf! : !k+1 = j1; :::; !k+m = jmg. Thus T is mixing. Conversely sup-
pose T is mixing. Then Qf! : !0 = i; !n = jg ! Qf! : !0 = igQf! : !0 = jg.
Thus �ip

(n)
ij ! �i�j and so p(n)ij ! �j . This implies that P is irreducible and

aperiodic: p(n)ii > 0 for all n su¢ ciently large, so period of each state i is 1;
irreducibility is obvious since p(n)ij > 0 for n su¢ ciently large.

Skew products
Let (
;F ; P; T ) be a dynamical system. Suppose for each ! 2 
 there is a

m.p.t. S! on a probability space (
0;F 0; P 0) such that the map (!; !0)! S!(!
0)

is measurable from (
�
0;F �F 0) into (
0;F 0). The map � : 
�
0 ! 
�
0
de�ned by �(!; !0) = (T!; S!(!0)) is called the skew product of T and fS!g!2
.
A special case: let 
0 be a compact topological group and S!(!0) = f(!)!0

where f : 
! 
0 is a given measurable function. If E is a Borel set in 
0 then
A = f(a; b) 2 
0 � 
0 : ab 2 Eg is a Borel set and f(!; !0) : S!(!0) 2 Eg =
f(!; !0) : (f(!); !0) 2 Ag 2 F � F 0 by measurability of f . Hence � is a skew
product if we take P 0 to be the Haar measure.

Theorem
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� is m.p. on (
� 
0;F � F 0; P � P 0):
Proof: it su¢ ces to show that (P�P 0)(��1(A�B)) = (P�P 0)(A�B) if A 2

F andB 2 F 0. The left side is
Z
I��1(A�B)d(P�P 0) =

Z
IT�1(A)

Z
If!0:S!(!0)2BgdP

0(!0)dP!) =Z
IT�1(A)P

0(B)dP (!) = P (T�1(A))P 0(B) = (P � P 0)(A�B).

Ergodic theorem for �ows:

Theorem

Let fTtgt�0 be a �ow on (
;F ; P ). Then lim
�!1

1
�

�Z
0

f(Tt(!))dt exists a.e. and

in L1 for every f 2 L1. Also the limit exists in Lp if f 2 Lp where 1 � p <1.

Proof: we have

�Z
0

f(Tt!)dt+

[�]+1Z
�

f(Tt!)dt =

[�]X
k=0

(k+1)Z
k

f(Tt!)dt. Also

(k+1)Z
k

f(Tt!))dt =

1Z
0

f(Tt+k!)dt

=

1Z
0

f(TtTk!)dt = g(Tk!) where g(!) =

1Z
0

f(Tt!)dt. Hence 1
�

�Z
0

f(Tt!))dt =

[�]
�

1
[�]

[�]X
k=0

g((T1)
k!)� 1

�

[�]+1Z
�

f(Tt(!))dt.

g is clearly measurable. If f 2 Lp then g 2 Lp. [ This follows by Minkowski�s

inequality in integral form and that fact that each Tt is m.p.]. Further 1
�

�Z
[�]

f(Tt(!))dt!

0 uniformly as � ! 1 if f is bounded. Combined with Lp� Ergodic The-
orem and Birkho¤ ergodic theorem we can draw the following conclusions:

if f 2 Lp \ L1 then 1
�

�Z
0

f(Tt!))dt converges in Lp; p = 1; 2. Noting that





 1�
�Z
0

f1(Tt!))dt� 1
�

�Z
0

f2(Tt!))dt








p

� 1
�

�Z
0

kf1(Tt!))� f2(Tt!))kp dt

= 1
�

�Z
0

kf1 � f2kp dt < � whenever kf1 � f2kp < � we can conclude that

1
�

�Z
0

f(Tt!))dt converges in Lp if f 2 Lp and 1 � p < 1. Birkho¤�s theorem
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implies that 1
N

N+1Z
N

f(Tt(!))dt! 0 a.e. as N !1 if f 2 L1. [ a1+a2+:::+ann ! c

implies janj < jcj+(n+n�1)" for n su¢ ciently large, so an
n ! 0]. Suppose f is

non-negative and integrable. Then 1
�

[�]+1Z
�

f(Tt(!))dt � 1
�

[�]+1Z
[�]

f(Tt(!))dt ! 0

as � ! 1. It follows that lim
�!1

1
�

�Z
0

f(Tt!))dt exists a.e. for any non-negative

f in L1. Of course, the same must be true for all f in L1 since the limit is �nite
a.e.., In fact the limit is integrable by Fatou�s Lemma.

Theorem [Local ergodic theorem for �ows]

Let fTtg be a �ow on (
;F ; P ). Then 1
2"

"Z
�"

f(Tsx)ds! f(x) as "! 0 almost

everywhere for any f 2 L1(P ).

Proof:
R 1Z
�1

jf(Tsx)j dsdP (x) =
1Z

�1

R
jf(Tsx)j dP (x)ds =

1Z
�1

kfk1 ds = 2 kfk1 <

1. Hence there is a null set E in (
;F ; P ) such that x =2 E implies
1Z

�1

jf(Tsx)j ds <

1. For any such x Lebesgue�s Theorem implies that 1
2"

"Z
�"

f(Ts+tx)ds! f(Ttx)

for almost all t 2 (� 1
2 ;

1
2 ). Fix t such that

1
2"

"Z
�"

f(Ts+tx)ds! f(Ttx) for almost

all x. [ This is possible by Fubini�s Theorem]. Now Pfx : 1
2"

"Z
�"

f(Tsx)ds! f(x)

as " ! 0g = Pfx : 1
2"

"Z
�"

f(Ts+tx)ds ! f(Ttx) as " ! 0g because Tt is measure

preserving. This completes the proof.

Flow under a function:
Let (
;F ; P ) be a probability space and T be an i.m.p.t. on it. Let

f : 
 ! (0;1) be measurable with
Z
fdP = 1. Assume that

1X
n=0

f(Tn(!)) =

1 =
1X
n=1

f(T�n(!)) for every !. Let 
0 = 
 � R;
�

 = f(!; x) : 0 � x < f(!)g
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with the sigma �eld obtained by restricting the product of F with the Borel

sigma �eld of R to
�

. Note that (P �m)(

�

) =

Z
fdP = 1. De�ne Tt(!; x) =8>>>>>><>>>>>>:

(!; x+ t) if � x � t < �x+ f(!)

(Tn!; x+ t� f(!)� :::� f(Tn�1(!)) if � x+
n�1X
k=0

f(T k!) � t < �x+
nX
k=0

f(T k!)

(T�n!; x+ t+ f(T�1!) + :::+ f(T�n(!)) if � x�
nX
k=0

f(T�k!) � t < �x�
n�1X
k=0

f(T�k!)

We call fTtg the �ow built under f on T .

Theorem [Ambrose, Kakutani]
Any proper measurable �ow is isomorphic to a �ow built under a function.
For de�nition of a proper �ow and a proof of the theorem we refer the reder

to the following article:
"Structure and Continuity of Measurable Flows" by Warrwn Ambrose and

Shizuo Kakutani, Duke Math. Jour., Vol. 9, No. 1, 1942. This article has also
been reprinted in Selected Papers of Shizuo Kakutani, Volume 2,Birkhauser,
1986.

Unique ergodicity :
Consider a DS (X;F ; P; T ) where X is a compact Hausdor¤ space and Then

F is the Borel sigma �eld.

Let M = f� 2 C(X)� : � is a probability measure and � � T�1 = �g. This
is a compact convex set in C(X)� with the weak* topology. [ Compactness
follows from the fact that M is a closed subset of the closed unit ball which is
compact by Banach-Alaoglu Theorem]. By Krein-Milman Theorem M is the
closed convex hull of its extreme points.

Lemma: � 2M makes T ergodic i¤ � is an extreme point of M .
Proof of the lemma. suppose � 2 M makes T ergodic. If possible let

� = t�1 + (1 � t)�2 with 0 < t < 1; �i 2 M(i = 1; 2) and �1 6= �2. If
T�1(A) = A then �(A) = 0 or �(Ac) = 0. In the �rst case �1(A) = �2(A) = 0
and in the second case �1(A

c) = �2(A
c) = 0 so �1(A) = �2(A) = 1. Hence T

is ergodic w.r.t. �1 and �2 also. By Birkho¤�s Theorem we see that if E 2 F

then 1n

n�1X
k=0

IE(T
kx) ! �(E) a.e. [�] and in L1(�); 1n

n�1X
k=0

IE(T
kx) ! �1(E) a.e.

[�1] and in L
1(�); and 1

n

n�1X
k=0

IE(T
kx) ! �2(E) a.e. [�2] and in L

1(�): ThusZ ����� 1n
n�1X
k=0

IE(T
kx)! �(E)

����� d�(x)! 0 and this implies
Z ����� 1n

n�1X
k=0

IE(T
kx)! �(E)

����� d�i(x)!
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0 for i = 1; 2. But then there is a subsequence of 1n

n�1X
k=0

IE(T
kx) converging to

�(E) a:e:[�i] and so �(E) = �1(E) = �2(E). This is true for any measurable
set E. This contradiction shows that � is an extreme point of M . Conversely
suppose T is invariant but not ergodic w.r.t. �. There is an invariant set
A such that 0 < �(A) < 1. Let �1(E) =

�(E\A)
�(A) and �2(E) =

�(E\Ac)
�(Ac) .

Then �1 and �2 are both probability measures. �1(T
�1(E)) = �(T�1(E)\A)

�(A) =

�(T�1(E\A))
�(A) = �((E\A))

�(A) = �1(E) so �1 2 M . Similarly �2 2 M . We have
�(E) = �(E \ A) + �(E \ Ac) = �(A)�1(E) + �(Ac)�2(E) for all E showing
that � is not an extreme point of M . [ �1 = �2 would imply �(A \ A) =
�(A)�1(A) = �(A)�2(A) = 0, a contradiction].
We now prove uniform convergence in Birkho¤�s theorem under certain con-

ditions.

De�nition: T is uniquely ergodic if there is a unique probability measure
under which it is invariant.
Justi�cation of this comes from the fact that when M is a singleton, f�g,

then � is necessarily an extreme point and so T is ergodic w.r.t. �.

Theorem [Weyl]
Suppose the DS (
;F ; P; T ) is uniquely ergodic where 
 is a compact met-

ric space and F is the Borel sigma �eld. If T and f are continuous then

1
n

n�1X
k=0

f(T kx) converges uniformly. Also 1
n

n�1X
k=0

�Tkxl ! P in weak* topology.

Proof: we know that 1
n

n�1X
k=0

f(T kx)!
Z
fdP a.e.. Suppose the convergence

is not uniform. Then we can �nd � > 0; n1 < n2 < ::: and fxlg � 
 such

that

����� 1nl
nl�1X
k=0

f(T kxl)�
Z
fdP

����� � � 8l. Let �l = 1
nl

nl�1X
k=0

�Tkxl . This sequence

of probability measures has a subsequence converging in weak* topology to a
probability measure. [Recall that C(X) is separable and hence the unit ball of
its dual is weak* metrizable]. This limiting measure belongs to M (by a direct
veri�cation which is left to the reader) and the hypothesis implies that it must

be P . This clearly contradicts the fact that

����� 1nl
nl�1X
k=0

f(T kxl)�
Z
fdP

����� � � 8l.

The second part follows easily from this proof.

Theorem [ A converse of Weyl�s Theorem].

Suppose (
;F ; P; T ) is a DS where 
 is a compact metric space and F is the

Borel sigma �eld. If T is continuous and ergodic and 1
n

n�1X
k=0

f(T kx) converges
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uniformly for every f 2 C(
) then T is uniquely ergodic. The same conclu-

sion holds if we only know that some subsequence of f 1n
n�1X
k=0

f(T kx)g converges

uniformly for each f 2 C(
).

Proof: suppose Q is a probability measure on (
;F) such that Q�T�1 = T .

Suppose 1
nj

nj�1X
k=0

f(T kx) ! g uniformly for some fnjg " 1. Then
R
fdQ =

R
1
nj

nj�1X
k=0

f(T kx)dQ ( because Q � T�1 = T ). Letting j ! 1 we get
R
fdQ =R

gdQ. However ergodicity of T w.r.t. P shows that g =
R
fdP (a.e., hence

evreywhere, be continuity). It follows that
R
fdQ =

R
gdQ =

R R
fdPdQ =R

fdP . Since this holds for all f 2 C(
) we get P = Q, as stated.

Remark: suppose (
;F ; P; T ) is a DS where 
 is a compact metric space

and F is the Borel sigma �eld. If T is continuous and 1
n

n�1X
k=0

f(T kx) converges

uniformly to a constant for every f 2 C(
) then T is uniquely ergodic. The

same conclusion holds if we only know that some subsequence of f 1n
n�1X
k=0

f(T kx)g

converges uniformly to a constant for each f 2 C(
). The proof is same as the
one above.

Example
Let � be an irrational number, 
 = [0; 1];F = borel sigma �eld, P =

Lebesgue measure and T (x) = x + �(mod(1)). Suppose � is a probability

measure on 
 which makes T invariant. Then
Z
ei2�nxd�(x) =

Z
ei2�nxd(� �

T�1)(x) =

Z
ei2�n(y+�)d�(y) = ei2�n�

Z
ei2�nyd�(y). Since ei2�n� = 1 i¤ n = 0

it follows that
Z
ei2�nxd�(x) = 0 for all n 6= 0. [ For n = 0 the integral is

1]. It follows that � = P . Thus T is uniquely ergodic. Hence 1
n

n�1X
k=0

f(x + k�)

converges uniformly to

1Z
0

f(x)dx for any continuous periodic function f with

period 1.

Exercise
Show that above fact remains true if f is periodic and Riemann integrable

(not necessarily continuous).
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The fact that this is true for all intervals contained in [0; 1) is called Weyl�s
Equi-distribution Theorem.
Hints: we can �nd continuous functions g and h such that g � f � h

and

1Z
0

(h � g) is as small as necessary. (To see this consider step functions

approximating f and modify them suitably on small intervals to get continuous
functions).

Existence of invariant measures

Theorem
Suppose T : 
 ! 
 be continuous where 
 is a compact metric space. Let

F be the Borel sigma �eld. Then there exists a probability measure Q on (
;F)
such that T is m.p. and ergodic w.r.t. Q.

Proof: let P be any probability measure on (
;F) and �n = 1
n

n�1X
k=0

P � T�k.

This sequence of probability measures has a subsequence, say f�njg converging
in weak* topology of C(X)� to a probability measure �. We claim that � �
T�1 = �. It su¢ ces to show that

Z
f(T (x))d�(x) =

Z
fd� for every continuous

function f . Now
Z
f(T (x))d�(x) = lim 1

nj

nj�1X
k=0

Z
f(T k+1(x))dP (x)

= lim 1
nj

njX
k=1

Z
f(T k(x))dP (x) = lim 1

nj
f
nj�1X
k=0

Z
f(T k(x))dP (x) �

Z
fdP +

Z
f(Tnj (x))dP (x)g = lim 1

nj
f
nj�1X
k=0

Z
f(T k(x))dP (x)

=

Z
fd�. Thus � makes T m.p.. Now the collection of all invariant probabil-

ity measures is a non-empty compact convex set. By Krein - Milman Theorem
this set has an extreme point Q. As seen earlier this Q makes T ergodic.

Remark: in above theorem can we �nd Q such that Q << P where P is a
given probability measure?. The answer is no! Let 
 = S1;m denote normalized
arc length measure and let P be any probability measure such that P << m but
m is not absolutely continuous w.r.t. P . [ For instance P could be m restricted
to the upper half of the circle divided by 2]. Let Tz = az where a 2 S1 is not a
root of unity. Suppose there is a probability measure Q such that Q << P and
Q � T�1 = Q where Tz = az and a is not a root of unity.. Then there exists

f such that Q(E) =
Z
E

fdm. Now
Z
E

f � Tdm =

Z
T (E)

fdm ( because T is i.m.p.

w.r.t. m)
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= Q(T (E)) = Q(E) =

Z
E

fdm for all Borel sets E so f is an invariant

function on (S1;m). Since T is ergodic we get f = c [m] for some constant

c. But then Q(E) =

Z
E

fdm = cm(E) which implies that m << Q << P

contradicting the fact that m is not absolutely continuous w.r.t. P .

Theorem
Let (
;F ; P ) be a probability space and T : 
 ! 
 be bijective and bi-

measurable. Suppose P � T << P and P � T�1 << P . Then the following are
equivalent:
a) there exists an invariant probability measure for T which is equivalent to

Q

b) f 1n
n�1X
k=0

f(T k(!))g converges a.e. [P ] for every f 2 L1:

Proof: a) implies b) is obvious from Birkho¤�s Ergodic Theorem. For b) im-

plies a) letQ(E) = lim 1
n

n�1X
k=0

P (T�k(E)). The limit exists since 1n

n�1X
k=0

IE(T
k(!))

exists a.e. [P ], hence also in L1(P ) be DCT. [ That Q is indeed a probability
measure follows by Vitali-Hahn-Saks-Theorem]. By hypothesis Q << P . Also
Q � T�1 = Q. Now suppose P (A) > 0. Then Pf

[
n

T�nAg � P (A) > 0.

Since
[
n

T�nA is an invariant set the de�nition of Q shows Q(
[
n

T�nA) =

P (
[
n

T�nA) > 0. If Q(A) = 0 then Q(T�n(A)) = 0 for all n implying that

Q(
[
n

T�nA) = 0 a contradiction. We have proved that P (A) > 0 implies

Q(A) > 0 and the proof is complete.

Theorem [DOWKER]
Let (
;F ; P ) be a probability space and T : 
 ! 
 be a bijective map

such that T and T�1 are measurable. Suppose lim inf P (T�n(A)) > 0 whenever
P (A) > 0 and P � T�1 << P . Then there exists a probability measure � on
(
;F) such that ��T�1 = � and �~P ( in the sense � << P << �). Conversely
if there exists a probability measure � on (
;F) such that ��T�1 = � and �~P
then lim inf P (T�n(A)) > 0 whenever P (A) > 0.

We use Banach limits in the proof. [Let M be the set of all bounded se-
quences fang of real numbers such that lim a1+a2+:::+an

n exists considered as a
subspace of the Banach space l1 of all bounded sequences of real numbers with
the supremum norm. By Hahn Banach Theorem there exists a continuous linear
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map L : l1 ! R such that kLk = 1 and L(fang) = lim a1+a2+:::+an
n whenever

fang 2 M . We claim that L has the following properties: L(fcg) = c for any
constant sequence fcg; L(fang) = c whenever an ! c; lim inf an � L(fang) �
lim sup an for all fang 2 l1, L(fan+1 � ang) = 0 for all fang 2 l1 and
L(fang) � 0 if an � 0 for all n. Proofs of these facts are easy: fan+1�ang 2M
and the cesaro limit of fan+1 � ang is 0. This gives L(fan+1 � ang) = 0: If
an � 0 for all n and C = supfan : n 2 Ng then L(fC � ang) � kLkC = C so
C � L(fang) � C and L(fang) � 0. If � > 0 then there exists n0 such that
an � lim inf an � � for all n � n0 and so L(fan0+n � lim inf an + �g) � 0. This
implies L(fan0+ng) � lim inf an � �. However L(fan0+ng) = L(fan0+n�1g) =
::: = L(fang) and � is arbitrary so L(fang) � lim inf an. Replacing fang by
f�ang we get L(fang) � lim sup an].

Now let Q(A) = L(fP (T�n(A))g. Q is a �nitely additive non-negative set
function and Q(
) = 1. Also P (A) = 0 ) P (T�1(A)) = 0 ) P (T�2(A)) =
0) ::: soQ(A) = 0:Note thatQ(T�1(A)) = L(fP (T�n(T�1A))g = L(fP (T�(n+1)(A))g =
L(fP (T�n(A))g = Q(A). We claim that P (A) = 0 i¤ Q(A) = 0. By hy-
pothesis lim inf P (T�n(A)) > 0 whenever P (A) > 0: Thus P (A) > 0 implies
Q(A) = L(fP (T�n(A))g � lim inf P (T�n(A)) > 0. The claim follows.

We now construct a countably additive measure � with the same properties.
Let �(A) = inff

X
Q(An) : An 2 F 8n;A �

[
n

Ang: We �rst observe the

following: if �(A) = 0 adn " > 0 we can choose disjoint A1; A2; :::sets such that
A �

[
n

An and
X

Q(An) < ". [ Replace fAng by fA1; A2nA1; A3nA1 [A2; :::].

Suppose E is the disjoint union of the sequence fEng in F . Given � > 0 and
j � 1 there exists a sequene fA;j;ng � F such that �(Ej)+ �

2j >
X
n

Q(Aj;n) and

Ej �
[
n

Aj;n. Since E �
[
j;n

Aj;n we have �(E) �
X
j;n

Q(Aj;n) �
X
j

f�(Ej) +

�
2j g =

X
j

�(Ej) + �. Thus �(E) �
X
j

�(Ej). Now �(E) + � >
X

Q(An)

for some sets An 2 F with E �
[
n

An. Since Ej �
[
n

(An \ Ej) we have

NX
j=1

�(Ej) �
NX
j=1

X
n

Q(An\Ej) =
X
n

NX
j=1

Q(An\Ej) =
X
n

Q(An\ (
N[
j=1

Ej)) �

X
n

Q(An) < �(E) + �. Since � and N are arbitrary we get
1X
j=1

�(Ej) � �(E).

Hence � is a measure. Note that �(E) � Q(E) + Q(;) + Q(;) + ::: = Q(E)
for all E: Finally we show that � � T�1 = � and �~P . We have �(T�1(A)) =
inff

X
Q(An) : An 2 F 8n; T�1(A) �

[
n

Ang = inff
X

Q(T�1An) : An 2 F

8n; T�1(A) �
[
n

T�1(An)g
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= inff
X

Q(An) : An 2 F 8n;A �
[
n

Ang = �(A). Clearly �(A) � Q(A) =

0 whenever P (A) = 0. Now suppose P (A) > 0. If possible let �(A) = 0.
There exist disjoint measurable sets Aj;n; (j; n � 1) such that A �

[
j

Aj;n and

1X
j=1

Q(Aj;n) <
�
2n for all n. Without loss of generalty we may assume that

Aj;n; j = 1; 2; ::: are disjoint. Choose kn such that
1X

j=kn

P (Aj;n) <
P (A)
3n . [

Possible because
1X
j=1

P (Aj;n) � 1 and P (A) > 0]. Let Cn =
kn�1[
j=1

Aj;n and

Dn =
1[

j=kn

Aj;n. Then An
[
n

Dn =
\
n

(AnDn) �
\
n

Cn = C (say) so A �

[
n

Dn [ C and P (A) �
X
n

P (Dn) + P (C) However since
1X

j=kn

P (Aj;n) <
P (A)
3n

the de�nition of Dn gives P (Dn) <
P (A)
3n so P (A) � P (A)

X
n

1
3n + P (C) =

1
2P (A) + P (C) and P (C) � 1

2P (A) > 0. This implies Q(C) > 0. However

Q(C) �
kn�1X
j=1

Q(Aj;n) �
1X
j=1

Q(Aj;n) <
�
2n and n is arbitrary so Q(C) = 0. This

contradiction completes the proof.
The converse part is easy: since Q(E) ! 0 as P (E) ! 0 we see that

lim inf P (T�n(A)) = 0 implies lim inf Q(T�n(A)) = 0 which gives Q(A) = 0,
hence P (A) = 0.

Remark: the condition P � T�1 << P can be replaced by the weaker con-
dition that limP (T�n(A)) exists and equals 0 whenever P (A) = 0. Indeed
Q(A) = L(fP (T�n(A))g = 0 in this case and the proof above works.
Converse part is easy: P (A) = 0 ) �(A) = 0 ) �(T�1A) = 0 )

P (T�1A) = 0 so P � T�1 << P . If P (A) > 0 and lim inf P (T�n(A)) = 0 then
there exists nj " 1 such that P (T�nj (A))! 0 which implies �(T�nj (A))! 0.
This is a contradiction because �(T�nj (A)) = �(A) > 0 for all j.

Remark: Dowker has proved that the condition lim inf P (T�n(A)) > 0 when-
ever P (A) > 0 can be replaced by the condition lim supP (T�n(A)) > 0 when-
ever P (A) > 0 :

Theorem [HAJIAN, KAKUTANI]
Let (
;F ; P ) be a probability space and T : 
 ! 
 be bijective and bi-

measurable. Then T has an invariant measure equivalent to P i¤ the measures
P � T�n; n = 1; 2; ::: are uniformly absolutely continuous w.r.t. P
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We do not prove this theorem here. For a proof see Theorem 3.18 of Intro-
duction to Ergodic Theory by N. A. Friedman. For more information on this
topic see: "The Problem of Finite Invariant Measures" by Daniel Glasscock.

Theorem [Ergodic Decomposition]
Let 
 be a compact metric space, T : 
 ! 
 continuous and P a Borel

probability measure such that P � T�1 = P . Then there exist Borel probability
measures P!; ! 2 
 such that
1)
Z
fdP =

Z
(

Z
fdP!)dP (!) for all f 2 L1(P )

2) 1
n

n�1X
k=0

f(T k!)!
Z
fdP! a.e. [P ] for all f 2 L1(P )

3) for each ! 2 
 the map T is ergodic w.r.t. P! for each ! 2 
:
Thus any continuous m.p. transformation is a �mixture�of ergodic transfor-

mations.
We shall not prove this theorem here.

ENTROPY

Let (
;F ; P; T ) be a dynamical system. If A is a �nite sub-sigma �eld of
F then there is a �nite partition of 
 by sets in F such that the sets in the
partition generate A. In view of this we use symbols like A;B etc for �nite
sigma �elds as well as �nite partitions.

De�nition: h(A) = �
kX
i=1

P (Ai) logP (Ai) whereA is the partition fA1; A2; :::; Akg:

[We use the convention 0 log 0 = 0]. This is called the entropy of A. It is measure
of the information contained in the partition.
If two partitions generate the same �nite sigma �eld then they

di¤er only be a permutation. Hence entropy of a partition depends
only on the �eld generated by it.

We can also call�
kX
i=1

pi log pi the entropy of the probability vector fp1; p2; :::; pkg.

Theorem
1) h(A) � 0
2) h(A) = 0 i¤A is trivial in the sense every set in it has probability 0 or 1.

3) h(A) � �
kX
i=1

1
k log

1
k = log k.

Proof: 1) and 2) are obvious. For 3) we use Jensen�s inequality. Since

logarithm is concave we have �
kX
i=1

P (Ai) logP (Ai) =
kX
i=1

P (Ai) log
1

P (Ai)
�

log
kX
i=1

P (Ai)
1

P (Ai)
= log k.
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Exercise

Trying to de�ne a continuous version of entropy de�ne h(f) = �
Z
f log f

for a density function f . Show that h(f) may be 0 or 1! If g is another density
function show that �

Z
f log gf � 0.

[ I(0;1) is one counterexample.
1X
j=1

ajI(j;:j+1) where aj =
c

n[logn]2 gives the

other counterexample. A suitable application of Jensen�s inequality gives the
last part].

Let h(A jB) = �
kX
i=1

mX
j=1

P (Ai \Bj) logP (AijBj) if A =fA1; A2; :::; Akg and

B =fB1; B2; :::; Bmkg. In this de�nition we ignore the terms with P (Bj) = 0.
Equivalently we de�ne P (Ai \Bj) logP (AijBj) = 0 when P (Bj) = 0.
Let us �rst observe that h(A jB) � 0 since P (AijBj) � 1.

Theorem
1) h(A

_
BjC) = h(AjC) + h(BjA

_
C)

2) h(A
_
B) = h(A) + h(BjA)

3) h(AjC) � h(BjC) if A � B
4) h(A) � h(B) if A � B
5) h(AjB) � h(AjC) if C � B
6) h(AjB) � h(A)
7) h(A

_
BjC) � h(AjC) + h(BjC)

8) h(A
_
B) � h(A) + h(B)

9) h(T�1AjT�1B) = h(AjB)
10) h(T�1(A)) = h(A)

Proof: note that h(A jB) = �
kX
i=1

mX
j=1

P (Ai\Bj) logP (AijBj) = h(A ) when

B is trivial. Thus all the even numbered properties follow from the previous ones.

Proof of 1): we have h(A
_
BjC) = �

kX
i=1

mX
j=1

pX
r=1

P ((Ai \ Br \ Cj) logP (Ai \

BrjCj) = �
kX
i=1

mX
j=1

pX
r=1

P ((Ai \Br \ Cj) log[P (AijBr \ Cj)P (Br \ Cj jCj)]

= �
kX
i=1

mX
j=1

pX
r=1

P ((Ai \Br \ Cj) logP (AijBr \ Cj)

�
kX
i=1

mX
j=1

pX
r=1

P ((Ai \Br \ Cj) logP (Br \ Cj jCj)
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= h(AjB
_
C) + h(BjC). We get 1) by switching A and B

If A � B then A
_
B = B and 1) gives h(BjC) = h(AjC) + h(BjA

_
C) �

h(AjC). We have proved 3).
To prove 5) we use the fact that the function �(t) = �t log t is concave. Hence

�(
mX
j=1

P (AijCj)P (Cj jBr)) �
mX
j=1

�(P (AijCj))P (Cj jBr) for all i and r. If B � C

then Br is a union of C 0js�Hence
mX
j=1

P (AijCj)P (Cj jBr) =
X

P (Ai\Cj)=P (Br)

where the sum is over those j for which Cj � Br. Thus
mX
j=1

P (AijCj)P (Cj jBr) =

P (AijBr) and we get �(P (AijBr)) �
mX
j=1

�(P (AijCj))P (Cj jBr). Multiply-

ing by P (Br) and summing over r we get �
pX
r=1

P (Ai \ Br) logP (AijBr) �

�
pX
r=1

mX
j=1

fP (AijCj) logP (AijCj)gP (Cj \Br)g

=�
mX
j=1

fP (AijCj) logP (AijCj)gP (Cj) =�
mX
j=1

P (Ai\Cj) logP (AijCj). This

says h(A jB) � h(A jC) and the proof of 5) is complete. To prove 7) note
that h(A

_
BjC) = h(AjC) + h(BjA

_
C) (by 1)) and the second term on

the right does not exceed h(BjC) by what we just proved, so h(A
_
BjC) �

h(AjC) + h(BjC). 9) is trivial.

Notation:
n_
i=0

Ai denotes the sigma �eld generated by
n[
i=0

Ai:

Now h(Aj
n_
i=1

T�iA) = h(
n_
i=0

T�iA) � h(
n_
i=1

T�iA) by 2) with A replaced

by
n_
i=1

T�iA and B replaced by A. Hence h(Aj
n_
i=1

T�iA) = h(
n_
i=0

T�iA) �

h(
n�1_
i=0

T�iA) (by 10)). Summing over n we get
NX
n=1

h(Aj
n_
i=1

T�iA) = h(
N_
i=0

T�iA)�

h(A). This gives 1
N h(

N_
i=0

T�iA) = 1
N h(A) +

1
N

NX
n=1

h(Aj
n_
i=1

T�iA). The se-

quence fh(Aj
n_
i=1

T�iA)g is decreasing (by 5)) and non-negative, hence con-
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vergent. Therefore lim
N!1

1
N

NX
n=1

h(Aj
n_
i=1

T�iA) exists (and is �nite):This proves

that lim
N!1

1
N h(

N_
i=0

T�iA) exists and equals lim
n!1

h(Aj
n_
i=1

T�iA).

De�nition

h(A ; T ) = lim
n!1

1
nh(

n_
i=0

T�iA) = lim
n!1

h(Aj
n_
i=1

T�iA).

This is called the entropy of A relative to T .

Caution: it is not true that h(A ; T ) = lim
n!1

h(Aj
n_
i=0

T�iA). In fact the

right side is 0 because h(A jB) = 0 if A � B. However in the equation h(A

; T ) = lim
n!1

1
nh(

n_
i=0

T�iA) we can replace
n_
i=0

T�iA by
n_
i=1

T�iA. This follows

from the fact that h(
n_
i=1

T�iA) �h(
n_
i=0

T�iA) �h(A)+h(
n_
i=1

T�iA).

Theorem.

1) The sequences f 1nh(
n_
i=0

T�iA)g and fh(Aj
n_
i=1

T�iA)g (whose limits ap-

pear in above de�nition) are both decreasing.

2) h(A ; T ) = lim
n!1

h(T�nAj
n�1_
i=0

T�iA)

3) It T is i.m.p. then h(A ; T ) = lim
n!1

h(Aj
n_
i=1

T iA).

4) h(A ; T ) � h(B; T ) if A � B

5) h(
m_
i=n

T�iA; T ) = h(A ; T ) if m � n � 0 and the same equation holds

without the condition n � 0 when T is i.m.p.

6) h(
k�1_
i=0

T�iA; T k) = kh(A ; T ) for k = 1; 2; :::

7) h(A ; T ) � h(B; T ) + h(AjB)

Proof: we have already seen that the second sequence is decreasing. The

�rst sequence is decreasing because 1
N h(

N_
i=0

T�iA) = 1
N h(A) +

1
N

NX
n=1

h(Aj

n_
i=1

T�iA). To prove that h(A ; T ) = lim
n!1

h(T�nAj
n�1_
i=0

T�iA) we note that
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h(T�kAj
k�1_
i=0

T�iA) = h(
k_
i=0

T�iA) � h(
k�1_
i=0

T�iA) (by 2) of previous theorem

with A replaced by
k�1_
i=0

T�iA and B replaced by T�kA). Hence 1
N

NX
k=1

h(T�kAj

k�1_
i=0

T�iA) = 1
N h(

N_
i=0

T�iA)� 1
N h(A). Also h(T

�kAj
k�1_
i=0

T�iA)

= h(T�(k+1)AjT�1(
k_
i=1

T�iA)) = h(T�(k+1)Aj
k_
i=1

T�iA) � h(T�(k+1)Aj

k_
i=0

T�iA) so the sequence fh(T�kAj
k�1_
i=0

T�iA)g is decreasing. It follows that

the limit of this sequence is also the limit of 1
N

NX
k=1

h(T�kAj
k�1_
i=0

T�iA) =

1
N h(

N_
i=0

T�iA)� 1
N h(A) which is h(A ; T ).

We have proved 2) and 3) follows immediately. 4) is easy: A � B implies
n_
i=0

T�iA �
n_
i=0

T�iB and hence h(
n_
i=0

T�iA) �h(
n_
i=0

T�iB): Dividing by n + 1

and letting n!1 we get h(A ; T ) � h(B; T ).

We have
N�1_
i=0

T�i
m_
j=n

T�jA = T �n
N+m�1�n_

i=0

T�iA. Therefore 1
N h(

N�1_
i=0

T�i
m_
j=n

T�jA) = 1
N h(T

�n
N+m�1�n_

i=0

T�iA)

= N+m�n�1
N

1
N+m�n�1h(

N+m�1�n_
i=0

T�iA). Letting N !1 we get 5).

We now prove 6): h(
k�1_
i=0

T�iA; T k) = kh(A ; T ) for k = 1; 2; :::

We have 1
nh(

n�1_
i=0

T�ik(
k�1_
j=0

T�jA)) = k 1
nkh(

nk�1_
j=0

T�jA) since fik + j : 0 �

i � n � 1; 0 � j � k � 1g = f0; 1; :::; nk � 1g. Letting n ! 1 we get

h(
k�1_
j=0

T�jA; T ) = kh(A; T ).

Before proving 7) let us observe the following:

Corollary
If T is rotation on S1 by a root of unity then h(A; T ) = 0 for any A.

Indeed T�i = I for some i and so h(
k�1_
j=0

T�jA; T ) : k = 1; 2; :::g is a �nite

set! It follows that fkh(A; T )g is bounded and hence h(A; T ) = 0:
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We shall see later that the conclusion holds for all rotations of S1.

Proof of property 7) of the theorem:

h(
n�1_
j=0

T�jA) � h(
n�1_
j=0

T�jA
_ n�1_

i=0

T�iB) = h(
n�1_
j=0

T�jB)+h(
n�1_
j=0

T�jAj
n�1_
i=0

T�iB).

By 8), 5) and 9) of previous theorem we have h(
n�1_
j=0

T�jAj
n�1_
i=0

T�iB) �
n�1X
j=0

h(T�jAj
n�1_
i=0

T�iB) �

n�1X
j=0

h(T�jAjT�jB) =
n�1X
j=0

h(AjB) = nh(AjB). This gives 1
nh(

n�1_
j=0

T�jA) �

1
nh(

n�1_
j=0

T�jB) + h(AjB). The proof is completed by letting n!1.

De�nition: the entropy h(T ) of a m.p. transformation T is de�ned by h(T ) =
supfh(A; T ) : A is a �nite sigma �eld contained in Fg.
Thus rotation by a root of unity has entropy 0.

Theorem [ Kolmogorov, Sinai]

If T is i.m.p. and A is a �nite sub sigma �eld such that
1_

n=�1
Tn(A) = F

then h(T ) = h(A; T ):

Lemma
Let A � �(A0) where A and A0 are �elds contained in F and A is �nite .

Let � > 0. Then there is a �nite �eld B contained in A0 such that h(AjB) < �.
The hypothesis that A � �(A0) can be weakened to the condition that each
A 2 A di¤ers from a set E in �(A0) by a null set.
Let A = fA1; A2; :::; Akg and assume ( without loss of generality) that

P (Ai) > 0 for each i. Let �(t) = �t log t; 0 < t � 1 and �(0) = 0. We
can �nd � 2 (0; 1) such that �(t) < �=k for 0 � t � � as well as for 1�� � t � 1.
Claim: there is a �nite �eld B contained in A0 generated by a parti-

tion (fB1; B2; :::; Bkg with same number of sets as fA1; A2; :::; Akg) such that
P (AijBi) > 1� �; i = 1; 2; :::; k.
Let us �rst see how this claim proves the lemma. We have P (Aj jBi) < �

for j 6= i since Aj � Aci . Hence h(AjB) = �
kX

i;j=1

P (Ai \ Bj) logP (AijBj) =

�
X
i 6=j

P (Ai \Bj) logP (AijBj)�
kX
i=1

P (Ai \Bi) logP (AijBi)

=
X
i 6=j

P (Bj)�(P (AijBj))+
kX
i=1

P (Bi)�(P (AijBi)) < �
kf
X
i 6=j

P (Bj)+
kX
i=1

P (Bi)g =

�. It remains to prove the claim. Let � > 0 be so small that (k � 1)(�+ k(k �
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1)�) < � min
1�i�k

P (Ai)
2 . Let � > 0 be such that (k � 1)[� + 2k(k � 1)�] < � For

1 � i � k choose Ci 2 A0 such that P (Ai�Ci) < �. Let E =
[
i 6=j
(Ci \ Cj): Let

Bi = CinE for 1 � i � k � 1 and Bk = 
n
k�1[
i=1

Bi. We only have to verify that

P (AijBi) > 1� �; i = 1; 2; :::; k. For this it su¢ ces to show that P (Ai�Bi) < �

for each i. For, we would then have P (Ai) � P (Bi) + � < P (Bi) +
P (Ai)
2

so P (Ai) < 2P (Bi) which implies P (Bi) � P (Ai \ Bi) < � < �P (Bi) and
P (Ai \ Bi) > (1 � �)P (Bi) or P (AijBi) > 1 � � as required. If i 6= j
then P (Ci \ Cj) � P (Ci�Ai) + P (Aj�Cj) < 2� and P (E) < 2k(k � 1)�:
Thus, for i < k, P (Ai�Bi) < � + 2k(k � 1)� < �. Finally P (Ak�Bk) =

P (

k�1[
i=1

Ai�

k�1[
i=1

Bi) � (k � 1)[�+ 2k(k � 1)�] < �.

Proof of Kolmogorov-Sinai Theorem:

we have
1_

n=�1
Tn(A) = F . Let B be any �nite sub�eld of F . We have

to show that h(B; T ) � h(A; T ). Let AN =
N_

n=�N
Tn(A). By 5) of previous

theorem we have h(AN ; T ) = h(A; T ). Hence h(B; T ) � h(AN ; T ) + h(BjAN )
= h(A; T ) + h(BjAN ). It su¢ ces to show that h(BjAN ) ! 0 as N ! 1.

Let A0 =
[
n

An. A0 is a �eld which generates F which contains B. Hence, if

� > 0 is given we can �nd a partition C = fC1; C2; :::Cmg with each Ci 2 A0
such that h(BjC) < �. There exists n0 such that each Ci 2 An0 . For N � n0 we
have h(BjAN ) � h(BjAn0) � h(BjC) < �.

Remark

There is a version of this theorem when T is not invertible. If
1_
n=0

T�n(A) =

F then h(T ) = h(A; T ): The proof is similar. [ In place of
N_

n=�N
Tn(A) in above

proof we use
N_
n=0

Tn(A). We omit the details].

Example: consider a stationary sequence fXng1�1 with state space f1; 2; :::; Ng.
The canonical version of this makes the projection maps f:::; p�1; p0; p1; p2; :::g
a stationary sequence on (R1;B1; P ) for a suitable probability measure P . Let
T be the shift transformation: f!ng ! f!n+1g. The sigma �eld F = B1 is

generated by
1[

n=�1
T�nA where A is the �eld generated by the sets f! : !0 =
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ig; 1 � i � N . By Kolmogorov-Sinai Theorem we have h(T ) = h(A; T ): Hence

h(T ) = lim
n!1

h(Aj
n_
k=1

T k(A)). A partition for
n_
k=1

T k(A) is the family of sets

f! : !�1 = i�1; !�2 = i�2; :::; !�n = i�ng. Hence h(Aj
n_
k=1

T k(A))

=
X

i�1;i�2;:::;i�n

Pff!�1 = i�1; !�2 = i�2; :::; !�n = i�ng
X
i0

�(Pf!0 =

i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng. From this it is clear that h(Aj
n_
k=1

T k(A)) � logN . [
X
i0

�(Pf!0 = i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng

= �
X
i0

Pf!0 = i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng logPf!0 =

i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng
=
X
i0

Pf!0 = i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng log 1
Pf!0=i0j!�1=i�1;!�2=i�2;:::;!�n=i�ng

� log
X
i0

Pf!0 = i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng 1
Pf!0=i0j!�1=i�1;!�2=i�2;:::;!�n=i�ng =

logN ].
Now we assume that T is a Bernoulli shift so that p0ns are i.i.d. with distri-

bution f�1; �2; :::; �Ng. We have

h(Aj
n_
k=1

T k(A))

=
X

i�1;i�2;:::;i�n

Pff!�1 = i�1; !�2 = i�2; :::; !�n = i�ng
X
i0

�(Pf!0 =

i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng
=

X
i�1;i�2;:::;i�n

�i�1�i�2 :::�i�n
X
i0

�(�i0) = �
X
i0

�i0 log�i0 . Thus h(Aj

n_
k=1

T k(A)) = �
NX
i=1

�i log�i for every n which implies that h(T ) = �
NX
i=1

�i log�i.

In the case of a Markov shift with initial distribution f�1; �2; :::; �Ng and
transition matrix ((qij)) we get

h(Aj
n_
k=1

T k(A))

=
X

i�1;i�2;:::;i�n

Pff!�1 = i�1; !�2 = i�2; :::; !�n = i�ng
X
i0

�(Pf!0 =

i0j!�1 = i�1; !�2 = i�2; :::; !�n = i�ng

= h(Aj
n_
k=1

T k(A))

=
X

i�1;i�2;:::;i�n

�i�1qi�1i�2 :::qi�ni�(n�1)
X
i0

�(qi�1i0) =
X
i�1

�i�1
X
i0

�(qi�1i0) =
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X
i;j

�iqij log qij for each n and so h(T ) =
X
i;j

�iqij log qij .

Theorem

If T is i.m.p. and
1_
n=0

T�n(A) = F then h(T ) = 0:

Proof: A � F �T�1(F) =
1_
n=1

T�n(A). Hence (by the lemma used in the

proof of Kolomogorov-Sinai Theorem) we can �nd a �nite �eld B contained in

the �eld
[
m

m_
n=1

T�n(A) with h(AjB) < �. For large n;B �
m_
n=1

T�n(A) and

h(Aj
n_
i=1

T�i(A)) � h(AjB) < �. Letting n ! 1 we get h(A; T ) � �. Since

� is arbitrary we get h(A; T ) = 0. By Kolmogorov - Sinai Theorem we have
H(T ) = h(A; T ) = 0.

Corollary
All rotations on S1 have entropy 0.

Proof: let Tz = az and A = fA;Bg where A = fe2�it : 0 � t < 1
2g and

B = Ac. We claim that
1_
n=0

Tn(A) = F , the Borel sigma �eld of S1. If a is not

a root of unity then fan : n = 1; 2; :::g is dense in S1 and
1_
n=0

Tn(A) contains

half circles starting at points of a dense set. Hence
1_
n=0

Tn(A) = F and T has

entropy 0. If a is a root of unity we have already proved that the entropy is 0.

Theorem
h(T k) = kh(T ) for any positive integer k. If T is invertible measure preserv-

ing then h(T�1) = h(T ) and h(T k) = jkjh(T ) for all integers k.

Proof: we claim that h(
k�1_
i=0

T�i(A); T k) = kh(A; T ). Note that 1
N h(

N�1_
i=0

T�ikf
k�1_
j=0

T�j(A)g =

k 1
Nkh(

Nk�1_
i=0

T�i(A)). Letting N ! 1 we get h(
k�1_
j=0

T�j(A); T k) = kh(A; T ).

On the one hand this gives kh(A; T ) � h(T k) for all A so kh(T ) � h(T k) and

on the other hand it gives h(A; T k) � h(
k�1_
j=0

T�j(A); T k) = kh(T ) so h(T k) �
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kh(T ). Thus h(T k) = kh(T ). Now let T be i.m.p. Then h(
k�1_
j=0

T j(A)) =

h(
k�1_
j=0

(T�1)�j(A)). But h(
k�1_
j=0

T j(A)) = h(T�(k�1)(
k�1_
j=0

T j(A))) since T is m.p.

It follows that h(
k�1_
j=0

(T�1)�j(A)) = h(
k�1_
j=0

T j(A)) = h(
k�1_
j=0

T�j(A)). Divide

by k and let k ! 1 to get h(T�1) = h(T ). If k is a negative integer then
h(T k) = h((T�1)k) = h(T�k) = �kh(T ). This completes the proof.

Remark
We state two results without proof:
1. If fAng is a sequence of �nite �elds whose union generates F then h(T ) =

limh(An; T )
2. h(T � S) = h(T ) + h(S)
These facts are not used in these notes.
Suppose (
;F ; P; T ) and (
0;F 0; P 0; T 0) are DS�s. If there exists a bijection

� : 
 ! 
 such that � and its inverse are measurable, P 0(�(A)) = P (A) and
�(T (!)) = T 0(�(!)) 8! 2 
 we say that the m.p. transformations T and T 0 are
isomorphic. Actually, we modify this de�nition by allowing � to be a bijective
map between sets of full measure in the two spaces where the sets of full measure
are invariant under the respective transformations. An important question in
Ergodic Theory is: when are two m.p. transformations isomorphic. Entropy is
an isomorphism invariant: if T and S are isomorphic then h(T ) = h(S). Is the
converse true? The answer is no: if T is rotation on S1 by a root of unity and T
is rotation by a non-root of unity then h(T ) = h(S) = 0. Since T is not ergodic
and S is ergodic they are not isomorphic. The celebrated Ornstein Isomorphism
Theorem says that two Bernoulli shift with same entropy are isomorphic. The
proof of this is not included in these notes.

De�nition: let A be a �nite �eld contained in F and G a sub-sigma �eld

of F . We de�ne h(AjG) as E
nX
i=1

�(P (AijG)) where) fA1; A2; :::; Ang is a par-

tition generating A and �(x) = �x log x: If G is generated by a �nite partition

fB1; B2; :::; Bmg then P (AijG) =
mX
j=1

P (AijBj)IBj
so h(AjG) =

mX
j=1

nX
i=1

�(P (AijBj))P (Bj) =

�
mX
j=1

nX
i=1

P (AijBj)P (Bj) logP (AijBj) so our new de�nition agrees with the

old de�nition in this case. We have h(AjG) = �E
nX
i=1

P (AijG) logP (AijG) =

Ef�
nX
i=1

IAi
logP (AijG)g: Indeed the last expression can be evaluated by con-
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ditioning on G and this yields the last equality. For future reference we state
this as:

Theorem

h(AjG) = Ef�
nX
i=1

IAi logP (AijG)g:

Theorem
1) h(A

_
BjG) = h(AjG) + h(BjA

_
G)

2) h(AjG) � h(BjG) if A � B
3) h(AjG1) � h(AjG2) if G2� G1
4) h(A

_
BjG) � h(AjG) + h(BjG)

5) h(T�1AjT�1G) = h(AjG)

Proof: we have P (BjA
_
G) =

X
i

IAi

P (B\AijG)
P (AijG) since E

X
i

IAi

P (B\AijG)
P (AijG) ICIAj

=

EE(IAj

P (B\Aj jG)
P (Aj jG) IC jG)

= EP (Aj jG)P (B\Aj jG)
P (Aj jG) IC = E

X
i

P (B \ Aj jG)IC = P (B \ Aj \ C) for all

C 2 G and for all j, proving that E
X
i

IAi

P (B\AijG)
P (AijG) ICIA = P (B \ A \ C) for

all C 2 G and for all A 2 A ( because every set in A is a disjoint union of A0js).
Since A

_
G is generated by sets of the type A \ C with A 2 A and C 2 G we

have proved that P (BjA
_
G) =

X
i

IAi

P (B\AijG)
P (AijG) .[ The ��� Theorem may be

used here].
Now h(BjA

_
G) = �E

X
j

P (Bj jA
_
G) logP (Bj jA

_
G)

= �E
X
j

X
i

IAi

P (Bj\AijG)
P (AijG) log

X
i

IAi

P (Bj\AijG)
P (AijG)

= �E
X
i;j

IAi

P (Bj\AijG)
P (AijG) log

P (Bj\AijG)
P (AijG)

= �E
X
i;j

IAi

P (Bj\AijG)
P (AijG) logP (Bj\AijG)+E

X
i;j

EIAi

P (Bj\AijG)
P (AijG) logP (AijG)

= �E
X
i;j

P (Bj \AijG) logP (Bj \AijG)+E
X
i;j

P (Bj \AijG) logP (AijG)

(where we used conditioning on G)
= h(A

_
BjG) +E

X
i

P (AijG) logP (AijG) =h(A
_
BjG)� h(AjG) proving

that h(A
_
BjG) = h(AjG) + h(BjA

_
G). We have proved 1). 2) follows

trivially from 1). It remains only to prove 3) since 4) follows from 3) and 1)
(and 5) is trivial). To show h(AjG1) � h(AjG2) if G2� G1. Let X = P (AjG1):
We have E(�(X)jG2) � �(E(XjG2) = �(P (AjG2)). Hence
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X
i

E(�(P (AijG1))jG2) � E
X
i

�(P (AijG2)). The right side is h(AjG2).

Note that E(�(P (AijG1))jG2) = E(�(P (AijG1)) so the left side is
X
i

E(�(P (AijG1)) =

h(AjG1). This �nishes the proof.

Theorem
If Gn " G then h(AjGn)! h(AjG) a.e.

We have h(AjGn) = E
kX
i=1

�(P (AijGn)) ! E
kX
i=1

�(P (AijG)) = h(AjG) by

Bounded Convergence Theorem.

Remark: we could have used this in the proof of Kolmogorv-Sinai Theo-

rem: An � An+1 and A �
1_

k=�1
An implies limh(AjAn) = h(Aj

1_
k=�1

An) �

h(AjA) = 0. In the proof of Kolmogorv-Sinai Theorem we had to prove that

h(Bj
n_

k=�n
T kA) ! 0. We know that h(Bj

n_
k=�n

T kA) ! h(Bj
1_

k=�1
T kA) =

h(BjF) = 0.

SHANNON-McMILLAN-BREIMAN THEOREM

Let T be the shift associated with a stationary sequence.

Let 
 =
1Y
�1
f1; 2:::; Ng;F = cylinder sigma �eld and P a stationary mea-

sure (i.e. a probability measure which makes the shift transformation f!ng !
f!n+1g m.p.). Let An be the �eld generated by the partition f! : !0 =
i0; !1 = i1; :::; !n = ing (i0js 2 f1; 2; :::; Ng). By Kolmogorov-Sinai Theo-

rem h(T ) = where h0;n�1 = h(An; T ). [
1_

n=�1
Tn(A0) = F then

h(T ) = h(A0; T ) =: lim
n!1

1
nh(

n_
i=0

T�iA) = h(An; T )].

Let p(i0:i1; :::; in) = Pf! : !0 = i0; !1 = i1; :::; !n = ing. We have h0;n�1 =
E � log p(Y1; Y2; :::; Yn) where we have denoted the projection maps on 
 by
Yn; n 2 Z.
Hence h(T ) = � lim

n!1
1
nE log p(Y1; Y2; :::; Yn).

Theorem [Shannon-McMIllan-Brieman]
If T is ergodic then � lim

n!1
1
n log p(Y1; Y2; :::; Yn) = h(T ) a.e..
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we �rst remark that if T is a Bernoulli shift then p(Y1; Y2; :::; Yn) = pY1pY2 ::::pYn

so 1
n log p(Y1; Y2; :::; Yn) =

1
n

nX
k=1

log pYk ! E log py1 (by SLLN or the ergodic

theorem)=
NX
k=1

pj log pj = �h(T ):

Now let T be an ergodic Markov shift with stationary distribution f�ig and
transition matrix ((pij)). We have� lim

n!1
1
n log p(Y1; Y2; :::; Yn) = � lim

n!1
1
n logf�Y1pY1Y2 :::pYn�1Yng

= � lim
n!1

1
n log �Y1 �

n�1X
k=1

lim
n!1

1
n log pYkYk+1 = �E log pY1Y2 by the ergodic

theorem since Yk = T�1(Y1) 8k. But �E log pY1Y2 = �
NX

i;j=1

�ipij log pij =

h(T ). Thus we have proved the theorem in these two cases. Now consider the
general stationary shift. Let gk(!) = � log p(Y�k(!);:::;Y�1(!);Y0(!))p(Y�k(!);:::;Y�1(!))

(k � 1) with
g0(!) = � log pY0(!). Let

g
(i)
k (!) = � log

p(Y�k(!);:::;Y�1(!);i)
p(Y�k(!);:::;Y�1(!))

(k � 1). Note that these numbers are all

non-negative. Now � lim
n!1

1
n log p(Y0(!); Y2(!); :::; Yn(!)) =

1
n

n�1X
k=1

gk(T
k(!)).

This is because
n�1X
k=0

gk(T
k(!)) = � log pY0(!)�

n�1X
k=1

log p(Y0(!);:::;Yk�1(!);Yk(!))p(Y0(!);:::;Yk�1(!))

= � log
n�1Y
k=1

p(Y0(!);:::;Yk�1(!);Yk(!))
p(Y0(!);:::;Yk�1(!))

= � log pY0(!)�log
p(Y0(!);:::;Yn�2(!);Yn�1(!))

p(Y0(!))
=

� log p(Y0(!); :::; Yn�2(!); Yn�1(!)) (*)
. Now PfY0 = ijY�k; Y�k�1; :::; Y�1g ! PfY0 = ijY�1; Y�2; :::g and hence

gk(!) = � logPfY0 = ijY�k; Y�k�1; :::; Y�1g ! � logPfY0 = ijY�1; Y�2; :::g on
fY0 = ig. In other words gk(!)! g(!)
where g(!) = � log pfY0jY�1; Y�2; :::g. We now show that E supfgk : k �

0g < 1. For this let � > 0 and Ek = f! : max gj
1�j<k

� � < gk(!)g. Then

P (Ek) =
X
i

PffY0 = ig \ Ekg: Let Fk;i = f! : max
1�j<k

g
(i)
j (!) � � < g

(i)
k (!)g.

Then gk = g
(i)
k on fY0 = ig so P (Ek) =

X
i

PffY0 = ig \ Fk;ig: Noting that

Fk;i 2 �fY�k; Y�k+1; :::; Y�1g we get

PfY0 = ig \ Fk;ig =
Z
Fk;i

e�g
(i)
k dP [ since g(i)k (!) = � log

p(Y�k(!);:::;Y�1(!);i)
p(Y�k(!);:::;Y�1(!))

so e�g
(i)
k = PfY0 = ijY�k; :::; Y�1g].

Hence PfY0 = ig \ Fk;ig � e��PfFk;ig. Thus Pfsupfgk : k � 0g > �g =X
k

PfEkg =
X
k

X
i

PffY0 = ig \ Fk;ig � e��
X
k

X
i

PfFk;ig � e��N

57



since
X
k

PfFk;ig � Pf
g = 1 for each i. It follows from this that supfgk :

k � 0g has �nite expectation. By dominated convergence theorem we get

Eg = lim
k!1

Egk. Since T is m.p. we have E 1
n

nX
k=1

gk(T
k(!)) = Egk. Thus Eg =

lim
k!1

E 1
n

nX
k=1

gk(T
k(!)) = � 1

n limk!1
E log p(Y0; Y1; :::; Yk) (by (*))= h(T ) [by the

statement immediately preceding the statement of this theorem]. We now write

1
n

nX
k=1

gk(T
k(!)) as 1

n

nX
k=1

g(T k(!))+ 1
n

nX
k=1

(gk � g)(T k(!)) and observe that the

�rst term tends a.s. to Eg (by ergodicity):If we show that the second term tends

to 0 a.s. we can conclude that 1n

nX
k=1

gk(T
k(!))f� � 1

n log p(Y0(!); :::; Yn�2(!); Yn�1(!))g

converges a.s., as required. LetGN = sup
n�N

jgk � gj. Then lim sup
n

����� 1n
nX
k=1

fgk(T k(!))� g(T k(!))g
����� �

lim sup
n

1
n

nX
k=1

��gk(T k(!))� g(T k(!))��
� lim sup

n

1
n

nX
k=N

��gk(T k(!))� g(T k(!))�� � lim sup
n

1
n

nX
k=1

GN (T
k(!)) = EGN

by the ergodic theorem. This is true for each N and GN ! 0 a.s. as N ! 1.
This completes the proof.

TOPOLOGICAL DYNAMICS

Let X be a compact metric space and T : X ! X a homeomorphism. We
say T is minimal if the orbit OT (x) = fTnx : n 2 Zg of x is dense in X for each
x 2 X.

Remark: we can study continous maps instead of homeomorphisms. We
have assumed that T is a homeomorphism for simplicity.

Theorem
T is minimal i¤ C closed and TC = C imply C = ; or C = X.
Proof: Suppose T is minimal, C is closed and TC = C. If x 2 C then

OT (x) � C. Since C is closed and OT (x) is dense we must have C = X.
Conversely suppose C closed and TC = C imply C = ; or C = X. Let x 2 X
and C be the closure of OT (x). Then TC = C but C is neither empty nor equal
to X.

Remark: minimality is the topological analog of ergodicity.
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Def. A minimal set is a non-empty closed set C such that TC = C and the
restriction of T to C is minimal.

Theorem
Minimal sets exist.

Proof: let E be the collection of all non-empty closed sets C such that TC =
C: Clearly this collections is not empty. Order this by reverse inclusion. If fCig
is a totally ordered family of sets in E then

\
i

Ci is nonempty ( by compactness)

and belongs to E : Hence there is a minimal element C in E . For any x 2 C the
closure of the orbit of x is a non-empty closed invariant set. By minimality of
C it must coincide with C. Hence C is minimal.

Def. T is called semi-simple if there exists a partition of X into closed sets
fCig such that TCi = Ci for all i and the restriction of T to Ci is minimal for
each i.
It will be shown later that ergodic automorphisms of compact groups are

not semi-simple.

Def. x is a periodic point of T if Tnx = x for some positive integer n. The
least integer with this property is called the period of x.

Theorem
Let T be a minimal homeomorphism. Then
1) f � T = f; f continuous implies f is a constant
2) T has no periodic points unless X is a �nite set

Proof: let f � T = f; f continuous. For any real number a let C = fx :
f(x) � ag. C is a closed invariant set. By minimality of T this closed must be
empty or X. If c = supfa 2 R : C = ;g then f(x) = c for all x:
Now suppose x is a periodic point. Then the orbit of x is a (�nite, hence

closed) set which is also dense, so X is �nite.

Example
Converse of 1) is false. An ergodic continuous homomorphism of a compact

metric group X is not minimal because the orbit of the identity is not dense;
however any invariant function is almost everywhere constant (by ergodicity)
and hence a constant if it is continuous. An explicit example is given after the
next theorem.

Theorem
Let T be a continuous homomorphism of a compact metric group G such

that 
 � Tn = 
 for some positive integer n and some character 
 of G implies

 = 1. Then T is ergodic. Converse also holds.
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Proof: we prove the converse part �rst. Let T be ergodic and suppose

 � Tn = 
 but 
 6= 1. Let k be the least positive integer with 
 � T k = 
:
Let f = 
 + 
 � T + ::: + 
 � T k�1. Then f is invariant and hence constant
a.e.. (hence a constant times the character 1). But the terms of this sum are all
distinct characters, hence orthogonal to each other and this cannot happen: Now
consider the direct part. Let f be invariant. Let f =

X
cn
nbe the Fourier

series of f . Then
X

cn
n(Tx) =
X

cn
n(x) and 
n �T j is also a character for
each n and each j. If 
n; 
n�T; 
n�T 2; ::: are all distinct characters then they are
orthogonal and < f; 
n � T j >=< f; 
n > by invariance of f so the coe¢ cients
< f; 
n � T j > in the Fourier expansion are all equal. This implies that they
are all 0 since the coe¢ cient sequence belongs to l2. Thus < f; 
n >= 0 in this
case. If f 6= 0 then there exists n such that < f; 
n >6= 0. For this n it follows
that 
n; 
n � T; 
n � T 2; ::: are not all distinct, i.e. there exists j < k such that

n � T j = 
n � T k. Thus 
n � T p = 
n where p = k � j 2 N. By hypothesis
we must have 
n = 1: This conclusion holds for any n such that < f; 
n >6= 0.
Thus there is only one non-zero term in the Fourier expansion of f and f is a
constant.

Remark: in particular the map T : S1 ! S1 de�ned by Tz = zn (where n is
a positive integer) is ergodic i¤ znm = zm; n � 1 ) m = 0. Thus T is ergodic
i¤ n 6= 1. Also z ! 1

z is not ergodic.

Remark: consider now the map T (a; b) = (a3; b2) on the torus. Any character

 is of the type (a; b) ! arbs where r and s are integers. If 
 � Tn = 
 and
n 2 N then a3nrb2ns = arbs for all a; b 2 S1 which implies r = s = 0 and 
 = 1.
Thus T is ergodic. Since T (1; 1) = (1; 1) this map is not minimal.

Examples
1. Let T be a rotation on a compact metric group G : Tg = ag where a 2 G.

The T is minimal i¤ fan : n 2 Zg is dense. In fact OT (e) = fan : n 2 Zg and if
this dense then so is OT (g) = fang : n 2 Zg for any g.
2. A continuous automorphism of a compact metric group G is minimal i¤

G = feg. This is trivial since Te = e:

3. Consider the shift T on 
 =
1Y
�1
f1; 2; :::; Ng. Under addition modulo N

on f1; 2; :::; Ng and pointwise addition on the product 
 becomes a compact
metric group and T is a continuous automorphism. Hence T is not minimal.
Of course the orbit of f!ng where !n = 1 for all n is a singleton set which

is not dense.

Def. A homeomorphism T of a compact metric spaceX is called topologically
transitive if OT (x) is dense for some x 2 X.
Of course, if T is minimal then it is transitive

Theorem
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FAE for a homeomorphism T of a compact metric space X
1) T is topologically transitive
2) C closed, TC = C ) C = X or C has no interior
3) U open, TU = U ) U = ; or U is dense
4) U; V open and non-empty ) Tn(U) \ V 6= ; for some integer n
5) the set of points whose orbits are not dense is of �rst category

Proof:
1) implies 2): let OT (x0) be dense, C closed and TC = C. If x0 2 C then

OT (x0) � C and so C = X. Otherwise, OT (x0) 2 Cc ( because TC = C).
Hence Cc is dense and C has no interior.
Equivalence of 2) and 3) is trivial.
3) implies 4): let U and V be non-empty open sets and suppose, if possible,

Tn(U)\V = ; 8n. Then
[
n

Tn(U) is a non-empty open invariant set and hence

it is dense by 3). But this set if disjoint from V which is a contradiction.
4) implies 5): let fUng be a countable base for the topology of X. Then

OT (x) is not dense , OT (x) \ Un = ; for some n , T kx 2 U cn 8k for some
n , x 2

[
n

\
k

T�k(U cn). We have to show that
[
n

\
k

T�k(U cn) is of �rst

category. We prove that
\
k

T�k(U cn) is nowhere dense. This set is closed so we

have to show that it has no interior. If a nonempty open set V is contained in\
k

T�k(U cn) then T
k(V ) \ Un = ; for all k which contradicts 4).

5) implies 1) follows from Baire Category Theorem.

Theorem
Consider a continuous map T of a compact metric space X. Let P be a

Borel probability measure whose support is X: Suppose T is m.p. and ergodic
w.r.t. P . The the set of points whose orbits are not dense is of measure 0.

Proof: let fUng be a base for the topology of X. fTnx : n = 0; 1; :::g is dense

in X if and only if x 2
1\
n=1

1[
k=0

T�kUn. Since T�1(
1[
k=0

T�kUn) � (
1[
k=0

T�kUn)

and T is ergodic we must have P (
1[
k=0

T�kUn) = 0 or 1. Since
1[
k=0

T�kUn

contains Un and P (Un) > 0 we must have P (
1[
k=0

T�kUn) = 1. This is true for

each n and hence P (
1\
n=1

1[
k=0

T�kUn) = 1. Thus the one-sided orbit of almost

all points are dense.

Corollary

61



Let T be an a¢ ne map on a compact connected metric abelian group G.
Then T is ergodic (w.r.t. Haar measure) i¤ it is topologically transitive.

Proof: let Tg = g0Sg where g0 2 G and S is a continuous automorphism.
Previous theorem shows that ergodic transformations are transitive. Let T be
transitive. Claim: if 
 is a character and 
 � Sk = 
 with k 2 N then 
 � S = 
.
For this let 
0(g) = 
(g�1Sg)) = 
(Sg)


(g) . Then 
0(T
k(g))

= 
0(g0Sg0:::S
k�1g0S

kg) = 
0(g0Sg0:::S
k�1g0)
0(S

kg) = 
(g�10 (Skg0))
0(S
kg) =


0(g)

because 
(Sk(g0)) = 
(g0) and 
0(S
kg) = 
0(g). [
0(S

kg) = 
(Sk+1g)

(Skg)

=

(Sg)

(g) = 
0(g)]. Hence 
0 � T k = 
0. Since T is transitive there exists g1 such
that OT (g1) is dense. It follows that 
0 takes only �nite number of values on
this dense set. Since G is connected 
0 must be a constant. Thus


(Sg)

(g) = 1

for all g and the claim is proved. Our next claim is that the smallest closed
sub-group containing g0 and the range of the map g ! g�1Sg is the whole of
G. Otherwise there is a character 
 such that 
(g0) = 1; 
(g�1Sg) = 1 for all
g but 
 6= 1. [ We take this result from Representation Theory for granted].
Note that 
(Tg) = 
(g0Sg) = 
(g0)
(Sg) = 
(Sg) = 
(g) and, by iteration

(Tng) = 
(g) for all n. On the dense set OT (g1) the character 
 takes only
the value 
(g1) and hence 
 = 1, a contradiction. We now prove that the two
claims above imply ergodicity of T . Let f be a T invariant function in L2. Let
f =

X
n

cn
n be the Fourier series of f . Then
X
n

cn
n(goSg) =
X
n

cn
n(g)

or
X
n

cn
n(g0)
n(Sg) =
X
n

cn
n. by iteration
X
n

cn
n(g0)
n � Sk =
X
n

cn
n

for each positive integer k. Fix i. If 
i; 
i � S; 
i � S2; ::: are distinct characters
then, since j
i(g0)j = 1; in�nitely many coe¢ cients in the series on the left will
have the same modulus (viz. jcij) forcing this coe¢ cient to be 0 [ becuase the
coe¢ cient sequence is square integrable]. Thus < f; 
i >6= 0 implies 
i � Sn =

i � Sm with n 6= m. But then 
i � Sjn�mj = 
i : By the �rst claim above
we conclude that 
i � S = 
i: But then 
i = 1 on fg�1Sg : g 2 Gg. From
the equation

X
n

cn
n(g0)
n(Sg) =
X
n

cn
n we conclude that 
i(g0) = 1. By

Claim 2 the subgroup generated by fg�1Sg : g 2 Gg and g0 is dense. It follows
that 
i = 1 whenever < f; 
i >6= 0 implying that f is a constant. This �nishes
the proof.

Theorem
If T is topologically transitive and f is a continuous invariant function then

f is a constant.

Proof: this is obvious.

Some examples:
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we �rst give an example to show that the converse of above theorem is false.
Let X be the disjoint union of two copies of the torus joined at the identity,
i.e. X = (fS1 � S1 � f0g) [ (fS1 � S1 � f1g)=~ where ~ identi�es (1; 1; 0)
and (1; 1; 1). Let S be an ergodic automorphism of the torus and T (a; b; 0) =
(S(a; b); 0); T (a; b; 1) = (S(a; b); 1). Then T maps each of the two tori into
themselves so no orbit can be dense. If f is a continuous invariant function then
it is constant on each of the two tori and the constants must be the same since
there is a common point (1; 1; 0) = (1; 1; 1).

Our next example shows that OT (x) can be dense for some x and a �nite set
for a set of points that is dense! Let T be a continuous ergodic automorphism

of the torus S1 � S1 and E =
1[
n=0

f(a; b) 2 S1 � S1 : an = 1 = bng. First note

that any point in S1 can be approximated by a root of unity. [ This just the
statement that the set of rationals in dense in R]. Given two points a and b in
S1 we can approximate them by roots of unity c and d and there exists n such
that cn and dn are both 1. Hence E is dense in the torus. If an = 1 = bn then
Tn(a; b) = Tf(a; b)ng = fT (an; bn)g = T (1; 1) = (1; 1): Hence the orbit of each
point of E is a �nite set. However, by an earlier theorem the set of points whose
orbits are dense has full measure since T is ergodic.

Theorem
Let X be a compact metric space and T : X ! X a topologically transitive

homeomorphism. If there is an equivalent metric which makes T an isometry
then T is minimal.

Proof: let d be a metric for X which makes T an isometry. Let x0 be a point
whose orbit is dense. Let x 2 X. We have to show that the orbit of x is dense.
Let y 2 X and � > 0. We can �nd integers n;m such that d(x; Tn(x0)) < � and
d(y; Tm(x0)) < �. Now d(y; Tm�n(x)) � d(y; Tm(x0)) + d(T

mx0; T
m�n(x))

= d(y; Tm(x0)) + d(T
n(x0); x) < 2�. This �nishes the proof.

Remark: let Tg = ag on a compact connected abelian metric group G. Then
TFE
1) T is ergodic
2) T is minimal
3) T is topologically transitive
4) fan : n 2 Zg is dense.
[ we have proved 1) and 3) are equivalent. The equivalence of 2), 3) and 4)

is trivial].

Conjugacy and spectrum:
let T and S be homeomorphisms of compact Hausdor¤ spaces X and Y

respectively. We say that T and S are (topologically) conjugate if there is a
homeomorphism � : X ! Y such that S � � = � � T .
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Conjugacy is an equivalence relation and minimality as well as transitivity
are conjugacy invariants. [ This means that if T and S are conjugate and one
of them has one of these properties so does the other]

Let T be a homeomorphism of compact metric space X. If f �T = �f where
f 2 C(X)nf0g and � 2 C then � is called an eigen function of T corresponding
to eigen value �.

In the next four theorems T is a transitive homeomorphism of a compact
metric space.

Theorem
If and f � T = �f where f 2 C(X)nf0g and � 2 C then j�j = 1 and jf j is a

constant.

Proof: supfjf(T (x))j : x 2 Xg = supfjf(x)j : x 2 Xg 6= 0 since T is
bijective. However the left side also equals supfj�j jf(x)j : x 2 Xg. It follows
that j�j = 1. It follows that jf j (Tx) = j�j jf(x)j = jf(x)j so jf j is constant on
the orbit of any point. Since there is a dense orbit,jf j must be a constant.

Theorem
The eigen space corresponding to a given eigen value is one dimensional.

Proof: let f �T = �f; g �T = �g; f 6= 0; g 6= 0. By previous theorem f and g
never vanish. It follows that fg is invariant. It is constant on a dense set hence
on X.

Theorem
Eigen functions corresponding to distinct eigen values are linearly indepen-

dent.

Suppose fi � T = �ifi; 1 � i � N , with �0is distinct. Suppose
NX
i=1

aifi = 0.

We get
NX
i=1

ai�
j
ifi(x) =

NX
i=1

aifi(T
j(x)) = 0 for 0 � j � N � 1. View this as

a system of N linear equations in the N variables aifi(x); 1 � i � N . The
coe¢ cient matrix of this system of linear equations is non-singular:[ This is
a vander Monde matrix and the determinant is the product of the numbers
(�k � �j) with k < j]. Hence aifi(x) = 0 for all i and x. But fi 6= 0 implies
fi(x) 6= 0 for all x and hence a = 0 for all i.

Theorem
Eigen values of T form a subgroup of S1.

Proof: this is trivial.
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Theorem
T has at most countably many eigen values.

Proof: let f �T = �f; f 6= 0; � 6= 1. We may suppose that f(x0) = 1 for some
x0. We claim that kf � 1k � 1=2 where kk is the supremum norm. Choose
n 2 N such that j�n � 1j � 1=2. [ If � is not a root of unity then f�n : n � 1g
is dense. If it is an N � th root of unity where N � 2 let �1 = �e2�ik=N

where k = N=2 or (N � 1)=2 according as N is even or odd. We claim that
either j�� 1j � 1=2 or j�1 � 1j � 1=2. If these inequalities are both false then
j�� �1j < 1 which implies

��1� e2�ik=N �� < 1. This gives 2 � 2 cos(2�k=N) < 1
or cos(2�k=N) > 1=2. When N is even this gives the contradiction �1 > 1=2
and when N is odd we get cos(�(1� 1

N )) > 1=2 which is again a contradiction
since �=2 � �(1� 1

N ) < �. Now observe that �1 is also an N � th root of unity
and hence it is of the type �n for some positive integer n].
Then kf � 1k � jf(Tnx0)� 1j = j�nf(x0)� 1j � 1=2. Now if there are

uncountable many eigen values then there are uncountable many eigen functions
fi(i 2 I) associated with distinct eigen values such that jfij � 1 8i. Thus fi=fi0
is an eigen function associated with an eigen value 6= 1 so kfi=fi0 � 1k � 1=2
whenever i 6= i0. But then kfi � fi0k � 1=2 whenever i 6= i0. This contradicts
the separability of C(X).

De�niton: we say T has a topological discrete spectrum (tds) if the the closed
subspace of C(X) spanned by eigen functions is C(X).
Note that if T has tds and T is also transitive then there exist continuous

functions ffn : n = 1; 2; :::g such that fn�T = �nfn; f
0
ns are linearly independent

and the closed subspace of C(X) spanned by eigen functions is C(X).

De�nition: Let T and S be homeomorphisms of compact metric spaces X
and Y respectively. We say T is topologically conjugate to S if there exists a
homeomorphism � : X ! Y such that � � T = S � �.

Theorem [ Halmos and von Neumann]
Let T be a homeomorphism of compact metric space X. TFE
1) T is topologically transitive and it is an isometry for some equivalent

metric
2) T is conjugate to a minimal rotation on a compact abelian metric group
3) T is minimal and has topological discrete spectrum
4) T is topologically transitive and has topological discrete spectrum

Proof: 1) implies 2): our aim is to make X itself a compact abelian group so
that T becomes a minimal rotation on it and the identity map is the required
conjugacy map. Let d be an equivalent metric that makes T an isometry. Let
OT (x0) be dense. De�ne � on OT (x0) by Tn(x0) � Tm(x0) = Tn+m(x0). Since
d(Tn(x0) � Tm(x0); T p(x0) � T q(x0)) = d(Tn+m(x0); T

p+q(x0))
� d(Tn+m(x0); T

p+m(x0)) + d(T p+m(x0); T
p+q(x0)) = d(Tn(x0); T

p(x0)) +
d(Tm(x0); T

q(x0))
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the map � : OT (x0) � OT (x0) ! OT (x0) is uniformly continuous, so it ex-
tends to a continuous map : X�X ! X. Also d(T�nx0; T�mx0) = d(Tnx0; T

mx0)
so the map Tn(x0)! T�n(x0) is uniformly continuous and extends to X. Thus
X becomes an abelian topological group ( in which x0 is the identity and the
inverse of Tnx0 is T�nx0). Note that T (Tn(x0)) = T (x0) �Tn(x0) so T acts as
rotation by T (x0) on X: By an earlier theorem this rotation is minimal. Clearly
T is conjugate to this rotation (via the identity map).
2) implies 3):
Let S be a minimal rotation on a compact abelian metric group G. We have

to show that S has discrete spectrum. Each character 
 is an eigen function.
Linear span of characters is an algebra which contains constants and separate
points. Also the complex conjugate of a character is a character. By Stone-
Weirstrass Theorem eigen functions span a sense subspace.
3) implies 4) is trivial.
4) implies 1): suppose fn � T = �nfn; fn 6= 0; jfnj � 1; f 0ns linearly inde-

pendent and span a dense subspace of C(X): Let D(x; y) =
1X
n=1

jfn(x)�fn(y)j
2n .

D(Tx; Ty) =
1X
n=1

jfn(Tx)�fn(Ty)j
2n =

1X
n=1

j�nj jfn(x)�fn(y)j2n = D(x; y). All that

remains is to show that D induces the original topology of X. Since each
fn is continuous convergence in the original metric implies convergence in D.
If D(xj ; x) ! 0 then fn(xj) ! fn(x) as j ! 1 for each n. This implies
f(xj)! f(x) for any f 2 C(X) [ because f 0ns span a dense subspace of C(X)].
This implies that xj ! x in the original metric. [ Let � > 0. There is a contin-
uous function f : X ! [0; 1] such that f(x) = 0 and f(y) = 1 if y 2 XnB(x; �).
Since f(xj) 6= 1 for j su¢ ciently large we get xj 2 B(x; �) for such j].

Theorem [ Topological Discrete Spectrum Theorem]
Two minimal homeomorphisms of compact metric spaces are topologically

conjugate i¤ they have the same eigen values.
We do not prove this theorem.

Theorem
Let T be uniquely ergodic and P be its unique invariant measure. Then T

is minimal i¤ P has full support.

Proof: If T is minimal and P (U) = 0 for some non-empty open set U then

X =

1[
n=�1

Tn(U) and this is a contradiction because P (Tn(U)) = 0 for all n.

Suppose P has full support. If T is not minimal then there is a proper
closed set C such that TC = C. There is a probability measure Q on C which
is invariant for the restriction of T to C. Let Q1(E) = Q(E \ C) for all Borel
sets E in X. Then Q1 � T�1 = Q1 and Q1 6= P because P (Cc) 6= 0 = Q1(C

c).
This contradicts the hypothesis.
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Theorem
TFE for a homeomorphism T of a compact metric space X :

1) 1
n

nX
k=0

f(T k(x))! c uniformly for some constant c for each f 2 C(X)

2) 1
n

nX
k=0

f(T k(x))! c pointwise for some constant c for each f 2 C(X)

3) 1n

nX
k=0

f(T k(x))!
Z
fdP for each x, for each f 2 C(X) for some invariant

p.m. P
4) T is uniquely ergodic

Proof: 1) implies 2) is trivial.

2) implies 3): let �(f) = lim
n!1

1
n

nX
k=0

f(T k(x)). [The limit is independent

of x by hypothesis]. � is linear and continuous on C(X) and hence there is

a complex measure P such that �(f) =
Z
fdP for all f 2 C(X). Since �

is positive, P is a positive measure and since �(1) = 1; P is a probability
measure. Since �(f � T ) = �(f) for all f 2 C(X) we see that P is invariant.

Since lim
n!1

1
n

nX
k=0

f �T k exists in L1 [by Birkho¤�s Ergodic Theorem] the constant

c in 2) must be
Z
fdP .

3) implies 4): suppose Q is an invariant measure. By 3), 1n

nX
k=0

f(T k(x))!Z
fdP for each x and Dominated convergence theorem gives

Z
fdQ =

Z
fdP

for all f . Hence Q = P .
4) implies 1): this is Weyl�s Theorem.

Theorem
A rotation Tg = ag on a compact metric group G is uniquely ergodic i¤ it

is minimal.
Proof: since Haar measure has full support the theorem previous to above

theorem shows that unique ergodicity implies minimality. If T is minimal that
fan : n 2 Ng is dense and, for any character 
 6= 1; we have 
(a) 6= 1

and 1
n

n�1X
k=0


(T kx) = 1
n

n�1X
k=0


k(a)
(x) = 1
n

n(a)�1

(a)�1 
(x) ! 0 for all x. Thus,

if Q is an invariant measure then (since T is necessarily ergodic)
Z

dQ = 0 for

all characters 
 except 1. It follows that
Z

dQ =

Z

dP (where P is the Haar

measure). Note that this holds for 
 = 1 also. Since characters span a dense
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subset of C(X) we get
Z
fdQ =

Z
fdP for all f 2 C(X) and hence Q = P .

This completes the proof.

Remark: let G be a compact metric group and T : G ! G be a continuous
automorphism. Then the Haar measure P and the measure �1 are both invariant
and they are unequal so T is not uniquely ergodic (unless G = f1g).

Theorem
An a¢ ne transformation on a compact metric group G is uniquely ergodic

i¤ it is minimal.

Proof: we do not prove that �if�part. This is available in "Minimal dynamical
systems with quasi-discrete spectrum", by Hahn and W. Parry, Jour. Lond.
Math Soc, Vol 40, pp 309-323, 1965
Now suppose Tg = aAg is uniquely ergodic. Then the unique invariant

measure is the Haar measure which has full support and hence T is minimal.

Remark: it has been shown that any i.m.p. ergodic transformation is isomor-
phic to a uniquely ergodic transformation. Thus, measure theoretically unique
ergodicity is not a useful concept!

Theorem [Birkho¤ Recurrence Theorem]
Let 
 be a compact metric space and T be a homeomorphism of 
. Then

there exists ! 2 
 such that every neighbourhood of ! contains Tn! for in�-
nitely many n.

Proof: we know that there a minimal set , i.e. a non-empty closed set C
such that TC = C and T : C ! C is minimal. Every neighbourhood of a point
! of C contains Tn! for in�nitely many n. [ ! 2 C = fTn! : n 2 Zg�. If
fTn! : n 2 Zg is a �nite set then T k! = ! for some positive integer k; in
this case any neighbourhood of ! contains T kj! = ! for all positive integers
j. If fTn! : n 2 Zg is an in�nite set it is clear that every neighbourhood of !
contains Tn! for in�nitely many n]:

Isomorphisms and spectral invariants

Let (
1;F1; P1) and (
2;F2; P2) be probability spaces and Ti : 
i ! 
i be
m.p. for i = 1; 2. We say T1 is isomorphic to T2 and write T1~T2 if there exist
sets Ei 2 Fi; i = 1; 2 such that Pi(Ei) = 1 (i = 1; 2) and
1) Ti(Ei) � Ei (i = 1; 2)
2) there exists a bijection � : E1 ! E2 such that � and �

�1 are measurable
and � � T1 = T2 � �.
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Note that if we replace E1 by
1\

n=�1
Tn1 E1 and E2 by

1\
n=�1

Tn2 E2 then we

have Ti(Ei) = Ei (i = 1; 2) instead of 1).
Note also that T1~T2 ) Tn1 ~T

n
2 8n:

Measure algebras and conjugacy :
Let (
;F ; P ) be a probability space: Let X be the set of all equivalence

classes [E] of sets E in F under the equivalence relation E~F if P (E�F ) = 0.
X is a complete metric space under the metric d([E]; [F ]) = P (E�F ). We can
de�ne set theoretic operations on X in the obvious way. For instance [E]\ [F ] =
[E \ F ]. Countable unions, countable intersections and complements can be
de�ned similarly. We can de�ne [P ]([E]) = P (E). We call (X; [P ]) a measure
algebra. For each [E] 2 X, IE is a well de�ned element of Lp (for any p): If T
is m.p. on (
;F ; P ) then T�1 : X ! X can de�ned by T�1([E]) = [T�1(E)].

De�nition: let (
1;F1; P1) and (
2;F2; P2) be measure spaces and X;Y
be the corresponding metric spaces obtained by above construction. A map
� : Y ! X is an isomorphism of measure algebras if it is a bijection, preserves
countable unions and complements and [P1]�([E]) = [P2]([E]) for all E 2 F2.

De�nition: T1 and T2 are conjugate if there is a measure algebra isomorphism
� : Y ! X such that � � T�12 = T�11 � �.
Note that isomorphism implies conjugacy. It can be shown that the converse

is also true if the probability spaces involved are Lebesgue spaces, i.e. spaces
isomorphic to [0; 1] with Borel sigma �eld and Lebesgue measure together with
a countable number of atoms.

De�nition: With above notations T1 and T2 are spectrally isomorphic if there
is an isometric isomorphism W of L2(P2) onto L2(P1) such that W (f) � T1 =
W (f � T2) for all f 2 L2(P2).

Theorem
If T1 and T2 are isomorphic then they are conjugate and if they are conjugate

then they are spectrally isomorphic.

Proof: we only have to prove the second implication. Suppose there is
a measure algebra isomorphism � : Y ! X such that � � T�12 = T�11 � �.
De�ne W : L2(P2) ! L2(P1) by WIE = IF where �([E]) = [F ]. (Note that
the indicators are not well de�ned pointwise but they are well de�ned as L2

functions). W extends to an isometric isomorphism of L2(P2) onto L2(P1) and
yields the desired spectral isomorphism.

Theorem
LetW : L2(P2)! L2(P1) be an isometric isomorphism. SupposeW (L1(P2)) �

L1(P1); W
�1(L1(P1)) � L1(P2) and W is multiplicative on L1(P2). Then
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there is an isomorphism � of measure algebras with WIE = IF where �([E]) =
[F ]:

Proof: we �rst observe that (WIE)
2 =WI2E =WIE soWIE is an indicator.

Hence we can de�ne � by �([E]) = [F ] whereWIE = IF . It is easy to check that

� is a well de�ned bijection. Note that [P2]([E]) = P2(E) =

Z
IE

�
IEdP2 =<

WIE ;WIE >=< IF ; IF >= P1[F ] or [P1]�([E]) = [P2]([E]). It remains to show
that � preserves complements and countable unions. The equation IE+IEc = 1
gives WIE +WIEc = W1. Since Wf = W1Wf for all bounded measurable
functions f we getW1 = 1. ThusWIE+WIEc = 1 so � preserves complements.
[ If WIE = IF and WIEc = IH then IF + IH = 1 so [H] = [F ]c]. To prove that
� preserves �nite unions we use the identity IA[B = IA+ IB � IAIB . Using the

fact that
n[
k=1

Ak "
1[
k=1

Ak we get I n[
k=1

Ak

! I 1[
k=1

Ak

in L2 and this shows that �

preserves countable unions. [Details are left to the reader].

Corollary
If W is an isometry such that W (L1(P2)) � L1(P1); W

�1(L1(P1)) �
L1(P2) and W is multiplicative on L1(P2) and if UT1 �W =W � UT2 then T1
and T2 are conjugate.
A property of a m.p. transformation which is preserved by isomorphism/conjugacy/spectral

isomorphism is called isomorphism/conjugacy/spectral invariant. Thus any spec-
tral invariant is a conjugacy invariant and any conjugacy invariant is an isomor-
phism invariant.

Theorem
Ergodicity, weak and strong mixing are spectral invariants (hence also con-

jugacy and isomorphism invariants).

Proof: T is ergodic i¤ ff 2 L2 : f �T = fg is one-dimensional. IfW (f)�T1 =
W (f � T2) ( as in the de�nition of spectral invariance) and T1 is ergodic then
f � T2 = f i¤W (f) � T1 = W (f) i¤Wf 2 fg 2 L2 : g � T = gg which shows
that ff 2 L2 : f � T2 = fg is one dimensional.

T is weak mixing i¤ it is ergodic and 1 is the only eigen value of UT : If
W (f) � T1 = W (f � T2) then � is eigen value of T2 and f is an eigen func-
tion corresponding to it i¤ � is eigen value of T2 and Wf is an eigen function
corresponding to �.
Suppose T1 is strong mixing and W (f) � T1 = W (f � T2) for some isometry

W . We have to show that < f � Tn2 ; g >!< f; 1 >< 1; g > for all f; g. Since

this holds when f or g is a constant we may suppose
Z
f =

Z
g = 0. Since

T1 is ergodic and conjugate to T2 it follows that T2 is ergodic. W maps T2
invariant functions to T1 invariant functions, so it maps constants to constants
and hence it maps the orthogonal complement of the space of constants to this
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space. Thus
Z
Wf = 0 =

Z
Wg. Now < f � Tn2 ; g >=< W (f � Tn2 );Wg >=<

W (f) � Tn1 ;Wg >! 0 since T1 is strong mixing.

Examples
Rotation on S1 by a root of unity and rotation by a non root of unity are not

not spectrally isomorphic (hence not conjugate or isomorphic). This is because
the second one is ergodic and the �rst one is not. Also the second map is not
weak mixing. [ Tz = az has a an an eigen value and hence it does not have
discrete spectrum]. Thus this map is not spectrally isomorphic to any weak
mixing map.
De�nition: an i.m.p. transformation T : 
 ! 
 is said to have countable

Lebesgue spectrum if L2(P ) has an orthonormal basis of the type f1g [ fUnT fj :
j = 1; 2; :::; n 2 Zg.

Example: let T be the (1=2; 1=2) two sided shift on
1Y
�1
f�1; 1g. Let g0 = 1

and gn1;n2;:::;nk(fang) = an1an2 :::ank for n1 < n2 < ::: < nk; k � 1. We have
UT gn1;n2;:::;nk(fang) = an1+1an2+1:::ank+1 = gn1+1;n2+1 ; :::;nk+1. If we write
the collection fgn1;n2;:::;nkg as a sequence ffjg the the functions f1g [ fUnT fj :
j = 1; 2; :::; n 2 Zg form an orthonormal basis for L2(P )
Let T and S both have countable Lebesgue spectrum. Let f1g [ fUnT fj :

j = 1; 2; :::; n 2 Zg and f1g [ fUnS gj : j = 1; 2; :::; n 2 Zg be the corresponding
bases. There is an L2 isometry W which maps UnT fj to U

n
S gj and such that

W (f) � T =W (f � S) and hence T and S are spectrally isomorphic.

Theorem
If T has countable Lebesgue spectrum then it is strong mixing.

Proof: let f1g [ fUnT fj : j = 1; 2; :::; n 2 Zg be a basis. As m ! 1; <
UmT U

n
T fk; U

l
T fj >!< UnT fk; 1 >< 1; U

l
T fj >= 0. Now ff :< UmT f; U

l
T fj >!<

f; 1 >< 1; U lT fj > as m ! 1g is a closed subspace of L2 which contains the
basis f1g [ fUnT fj : j = 1; 2; :::; n 2 Zg. Hence < UmT f; U

l
T fj >!< f; 1 ><

1; U lT fj > as p ! 1 for all f . Now fg : UmT f; g >!< f; 1 >< 1; g > as
m ! 1g is a closed subspace which contains an orthonormal set so it is equal
to L2.
This proves the theorem.
We now consider m.p.t.�s with pure point spectrum (PPP) i.e. those for

which there is an orthonormal basis of L2 consisting of eigen functions of UT .
The following elementary facts about eigen functions may appear to be repet-

itive but we shall go through them nonetheless. Let T be m.p. and ergodic. By
eigen values/eigen functions of T we mean those of UT in L2. If � is an eigen
function with eigen value � then j�j = 1 and jf j is a constant: the �rst property
follows by taking L2 norms on both sides of f �T = �f and the second property
follows from the facts that jf j is invariant and T is ergodic. Next we note that
eigen functions corresponding to di¤erent eigen values are orthogonal: f � T =
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�1f; g � T = �2g; �1 6= �2; f 6= 0; g 6= 0 imply that
Z
[f � T ][g � T ]� =< f; g >

(because T is m.p.) and
Z
[f � T ][g � T ]� = �1[�2]

� < f; g >= �1
�2

< f; g >.

Also eigen spaces are one dimensional: if f � T = �f; g � T = �g; f 6= 0; g 6= 0
then f

g is invariant, hence constant. Finally we observe that eigen values form
a subgroup of S1.

Theorem [Discrete Spectrum Theorem due to Halmos and Von Neumann]
Let Ti be an ergodic m.p.t. on (
iFi; Pi); i = 1; 2 and assume that both

these have PPP. Then the following are equivalent:
1) T1 and T2 are spectrally isomorphic

2) T1 and T2 have same eigen values
3) T1 and T2 are conjugate

Proof: 1) implies 2) is trivial. 3) implies 1) by de�nition. 2) implies 1) is
straightforward: we get orthonormal bases index by the common eigen values
and this gives an isometric isomorphism of L2 which is a spectral isomorphism.
2) implies 3) requires the following algebraic result proved earlier:

Lemma
Let H be an abelian group and K a subgroup of H such that k 2 K;n 2

N ) k = gn for some g 2 K. Then there exists a homomorphism � : H ! K
such that � is the identity on K:
[ This is purely algebraic. We are asserting that K is an algebraic retract of

H].

Proof of the lemma: let R = f(M;�) : K � M � H;� : M ! K is a
homomorphism with � = identity on Kg. (G1 � G2 means G1 is a subgroup of
G2). This contains (M;�) if M = K and � is the identity. Order this class by
saying (M1; �1) � (M2; �2) if M1 � M2 and �2jM1 = �1. It is clear that any
totally ordered subfamily of R has an upper bound. By Zorn�s Lemma there is
a maximal element (M0; �0). Claim: M0 = H. Suppose g 2 HnM0. Let M be
the group generated by M0 and g. We consider two cases:
Case 1: gn =2 M0 for any integer n. In this case M = fgnh : n 2 Z; h 2

M0g and the representation of elements of M in the form gnh is unique. Let
 (gna) = �0(a). This gives an element (M; ) strictly larger than (M0; �0)
which is a contradiction.
Case 2: there is a least positive integer N such that gN 2M0. Each element

of the group M is uniquely expressible as gna where a 2 M0 and 0 � n < N .
There exists h 2 K such that �0(g

N ) = hN : We de�ne  (gna) = hn�0(a).
Once again this gives an element (M; ) strictly larger than (M0; �0) which is
a contradiction.
we now prove 2) implies 3). Let � be the group formed by the common eigen

values of T1 and T2. Let ff� : � 2 �g and fg� : � 2 �g be orthonormal bases of
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eigen functions. We may and do assume that jf�j = 1 and jg�j = 1 everywhere.
We have UTi(f�f�) = ��f�f� and UTi(f��) = ��f��. Since eigen spaces are one
dimensional we see that f�� = c(�; �)f�f� for some c(�; �) 2 S1. We use the
lemma above to reduce the proof to the case when c(�; �) = 1 for all � and �. Let
H be the the product (S1)
1 (the collection of all functions from � : 
1 ! S1)
under pointwise multiplication andG be the subgroup of constant functions. De-
note by ha the constant function ha(!) = a 8!. The hypothesis of above lemma
is satis�ed, so we get a homomorphism � : H ! G such that � is the identity
on G: If F� = [�(f�)]�f� then one can easily check that F�� = F�F�. Hence we
assume hence forth that c(�; �) = 1 for all � and � and f�� = f�f�. Similarly
we may suppose g�� = g�g�. There is an isometric isomorphismW from L2(
2)
onto L2(
1) such that Wg� = f� for all �. Note that W (gh) = (Wg)(Wh) for
all g; h 2 N , the vector space spanned by the functions fg� : � 2 �g L1 If we
prove that this equation holds for all L1 functions f and g we can obtain an
isomorphism of measure algebras from W as described earlier and we can then
conclude that T1 and T2 are conjugate. Let M the vector space spanned by the
functions f�: If g 2 L1 then there is a sequence fgng � N such that gn ! g
in L2. It follows that gng� ! gg� in L2 and since W (gng�) =W (gn)W (g�) for
each n we getW (gg�) =W (g)W (g�). [ We used the fact that convergence in L2

implies a.e. convergence for a subsequence]. In particular we have proved that
W (g)W (g�)(=W (gg�)) 2 L2 for all g 2 L1 for all �. Now let g 2 L1 and h 2
L1: There exists fhng � N such that hn ! h in L2. Now

Z
jW (g)W (h)j2 �

lim inf

Z
jW (g)W (hn)j2 = lim inf

Z
jW (ghn)j2 =

Z
jW (gh)j2 < 1. Thus

W (g)W (h) 2 L2 for all g; h 2 L1. Next we take � 2 L2 and choose a

sequence fgng � N such that gn ! � in L2. We get
Z
jW (�)W (g)j2 �

lim inf

Z
jW (gn)W (g)j2 = lim inf

Z
jW (gng)j2 =

Z
jW (�g)j2 < 1. It fol-

lows that W (�)W (g) 2 L2 for all � 2 L2. This implies ( by a standard ar-
gument using Uniform Boundedness Principle) that W (g) 2 L1. Thus W
maps L1 into itself. If g; h 2 L1 choose fgng � N and fhng � N such
that gn ! g and hn ! h in L2. Since W (gnhm) = W (gn)W (hm); gn ! g in
L2;W (gn)W (hm) ! W (g)W (hm) in L2 we get W (ghm) = W (g)W (hm). Now
ghm ! gh in L2 as m ! 1 and W (g)W (hm) ! W (g)W (h) in L2 in view of
the fact that W (g) 2 L1. Hence W (gh) =W (g)W (h). This �nishes the proof.

Theorem
Any ergodic rotation T (g) = ag on a compact abelian metric group has pure

point spectrum. Eigen functions of T are constant multiples of characters and

the set of eigen values coincides with f
(a) : 
 2
^

Gg.

Proof: we have 
(Tg) = 
(ag) = 
(a)
(g) so 
(a) is an eigen value with
eigen function 
. Since characters span a sense subspace of L2 it follows that
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T has pure point spectrum. If f � T = �f; f 6= 0; � =2 f
(a) : 
 2
^

Gg then f
is orthogonal to each character, hence to L2. If � = 
(a) for some 
 then f is
a multiple of 
 because (by ergodicity) the eigen space corresponding to eigen
value 
(a) is one dimensional.

Theorem [Representation Theorem]
An ergodic m.p. transformation with pure point spectrum is conjugate to

an ergodic rotation on a compact abeliian group.

Proof: let � be the group of eigen values of the given transformation. Give
� the discrete topology. Let G be the dual group. Then G is a compact
abelian group under pointwise convergence topology. [ Think of G as a subset
of (S1)�. Pointwise convergence topology is the product topology relativized to
G. A straightforward argument show that G is closed in (S1)�. By Tychono¤�s
Theorem G is compact]. The inclusion map s : �! S1 is a character and hence
it belongs to G. De�ne V : G ! G by V (g) = sg. V is thus a rotation on
G. Suppose f is an invariant function for V . Let f =

X
< f; 
j > 
j be the

Fourier series of f . Then < f; 
j >= [
(s)]
� < f; 
j > so < f; 
j >= 0 unless


j(s) = 1. However 
j(s) is an eigen value and < f; 
j >= 0 except when this
eigen value is 1. This shows f is a constant and hence that V is ergodic. By
previous theorem V has pure point spectrum. T and S have the same eigen
values and hence they are conjugate by � Neumann Theorem.

Corollary
Any subgroup of S1 is the group of eigen values of an ergodic rotation on a

compact abelian group with pure point spectrum.
[ Such a rotation was constructed in the proof above].

TOPOLOGICAL ENTROPY

We write log for logarithm to base 2. Let X be a compact Hausdor¤ space.

De�nition: the entropy h(U) of an open cover U of X is de�ned by h(U) =
logN(U) where N(U) is the smallest number of sets from the cover U required
to cover X:
In the following we write U1 tU2 for the open cover consisting of sets of the

type A \B with A 2 U1; B 2 U2. We say that U2 is a re�nement of U1 if every
set in U2 is a subset of some set in U1. We write U1 � U2 in this case.
Note that h(U) = 0 i¤ X 2 U : Also h(U1) � h(U2) if U1 � U2. We claim

that h(U1 t U2) � h(U1) + h(U2). This follows from the simple fact that if
fAi : 1 � i � ng and fBi : 1 � i � mg both cover X then so does the collection
fAi \Bj : 1 � i � n; 1 � j � mg which has nm elements.
If T : X ! X is continuous then h(T�1U) � h(U) where T�1U = fT �1A :

A 2 Ug. If T is continuous and its range is all of X then h(T�1U) = h(U).
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Theorem
If U is an open cover and T : X ! X is continuous then lim

n!1
1
nh(U tT

�1U t
::: t T�(n�1)U) exists.

Proof: let an = h(U t T�1U t :::t T�(n�1)U). Then an+m � an + am. This
implies lim

n!1
1
nan exists.

De�nition: lim
n!1

1
nh(U t T

�1U t ::: t T�(n�1)U) is called the entropy of T
relative to U and is denoted by h(T;U).
Note that h(T;U1) � h(T;U2) if U1 � U2. In particular this inequality holds

if U2 is a subcover of U1.
Now we note that since h(U t T�1U t ::: t T�(n�1)U) � nh(U) we have

h(T;U) � h(U).

De�nition: the topological entropy h(T ) of a continuous map T : X ! X is
de�ned by

h(T ) = supfh(T;U) : U is an open cover of X}.
Note that h(T ) = 0 if T is the identity map of X:
Claim: h(T ) = supfh(T;U) : U is a �nite open cover of X}.
This follows from the fact that every open cover U has a �nite subcover U1

and h(T;U) � h(T;U1).

Theorem
Let Ti : Xi ! Xi be continuous maps for i = 1; 2 (where X1; X2 are compact

Hausdor¤ spaces). If T1 and T2 are topologically conjugate then they have the
same entropy.
This is straightforward. We omit the details.
Another result proved by a routine argument is that the entropies of T and

T�1 are the same.

We now state a few theorems on topological entropy and its relation to
entropy w.r.t. measures. We do not prove these theorem here. References for
the original articles containing the proofs of these results are available in Peter
Walter�s Ergodic Theory.

Theorem [L. W. Goodwyn]
The entropy of a homeomorphism w.r.t. a an invariant measure P does not

exceed the topological entropy.

Theorem [T.N.T. Goodman]
The topological entropy of T is the supremum of entropies w.r.t. all invariant

measures.

Theorem [ K. Berg]
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The topological entropy of an automorphism of a compact metric group
coincides with the entropy w.r.t. Haar measure.

Theorem [Bowen]
If fTt : t 2 Rg is a group of homeomorphisms of a compact metric space X

then h(Tt) = jtjh(T1):

KAKUTANI TOWERS AND ROKHLIN�s LEMMA

Let (
;F ; P; T ) be a dynamical system. Assume that T is i.m.p.. If fB; T (B); :::; TN�1(B)g
are disjoint we call this collection a column with base B and height N . We call
TN�1(B) the roof of the column and B [ T (B) [ ::: [ TN�1(B) the carrier of
the column.
A (Kakutani) tower is a countable collection of disjoint towers. Let T

= f C1; C2; :::g where Ck = fBk; T (Bk); :::; TNk�1(Bk)g; k = 12; :::are disjoint
columns. The set UT =

[
k

UCk where UCk = Bk [ T (Bk) [ ::: [ TNk�1(Bk) is

the carrier of the tower T . Its base is the union of the bases of its columns,viz.
B = B1 [ B2 [ ::::. Its roof is TN1�1(B1) [ TN2�1(B2) [ ::::. A set of the type
fT k(x) : 0 � k � Nk(x)�1g where Nk(x) is the height of the column containing
x is called a �bre.

Theorem [ Rokhlin�s Lemma]
Let (
;F ; P ) be a probability space and T : 
 ! 
 be i.m.p. and ergodic.

Assume that P is non-atomic. Given N 2 N and � > 0 there exists a measurable
set B such that B; T (B); :::; TN�1(B) are disjoint and carrier of this column has
measure > 1� �.

Proof: let C be any measurable set with 0 < P (C) < �
N . [ This is the

only place where non-atomicity of P is used. We remark that this property
may hold even in purely atomic spaces; for example Pfng = 1

2n in N]. Let
�C(x) = minfn � 0 : Tnx 2 Cg. This is �nite a.e. on C by Poincare�s
recurrence Theorem. Let Bk = fx 2 C : �C(x) = kg; k = 1; 2; ::: and let
Ck = fBk; T (Bk); :::; T k�1(Bk)g. Display these sets as a column of disjoint
sets. [ The sets in these columns are disjoint: if x 2 T i(Bk) \ T j(Bk) with
0 � i < j < k then T�ix and T�jx both belong to Bk which implies �C(T�ix) =
�C(T

�jx) = k. This is a contradiction because �C(T�ix) = i� j + �C(T�jx)].
This proves that Ck is a column. Suppose x 2 T iBk \ T j(Bm) with 0 � i < k
and 0 � j < m. Suppose i < j. Let u = T�ix and v = T�jx so that
u 2 Bk � C; v 2 Bm. Since T j�iv = u 2 C and v 2 Bm we must have
m � j � i. This is a contradiction because j � i � j < m. Similarly if j < i
and z = T�jx we can see that z 2 C and hence T i�j(T�ix) 2 C which implies
k � i � j � i < k a contradiction. Thus, we must have i = j. But then
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T�ix 2 Bk \ Bm = ; unless k = m. Thus we have constructed a Kakutani
tower.
Now we divide Ck into blocks of size N starting from the base. [There will

be some sets, not exceeding (N � 1)) which are not included in these blocks.
Pick the �rst set in each of these blocks and let B be the union of these sets.
Clearly B; TB; :::; TN�1(B) are disjoint. Note that T maps the union 
0 of all
the sets in the tower into itself and hence 
0 has measure is 1.[ If x 2 T i(Bk)
with i < k � 1 then Tx 2 T i+1(Bk) � 
0 and if x 2 T k�1(Bk) then Tx 2 B =[
k

Bk � 
0. Thus T
0 � 
0 and this implies P (
0) = 1]. Now the union of

N B;TB; :::; TN�1(B) covers all of this set of measure 1 except for the sets are
outside the blocks we have marked in each column. Since T is m.p. the sets in
the columns have the same measure and so the the leftover part of each column
has measure not exceeding NP (Bk). Thus Pf(B [ TB [ ::: [ TN�1(B))cg <
N
X
k

P (Bk) = NP (C) < �. This completes the proof.

Ergodic theorem in a Banach space

Theorem
Let X be a Banach space and T : X ! X be a bounded operator. Let

Sn =
1
n

n�1X
k=0

T k. Assume that

1) sup
n
kSnk <1

2) 1
n kT

nk ! 0 as n!1
Then fSnxg converges in the norm of X as n!1 for all x such that fSnxg

has a weakly convergent subsequence.

Proof: clearly, (I � T )Sn = Sn(I � T ) = 1
n (I � Tn). By 2) k(I � T )Snk =

kSn(I � T )k ! 0:

We have I � Sn = 1
n

n�1X
k=0

(I � T k) = (I � T ) 1n
n�1X
k=0

kSk.

Let Snjx! y weakly. We claim that Ty = y. We have TSnjx! Ty weakly
and (I � T )Snjx ! y � Ty weakly because T is weak-weak continuous. Thus
jx�(y)� x�(Ty)j = lim

��x�(I � T )Snjx�� � lim sup kx�k kxk


(I � T )Snj

 = 0.

Since x� is arbitrary we get y = Ty. Let z = x� y. Then Snz = Snx� Sny =

Snx � y so Snjz ! y � y = 0 weakly. Now z � Snjz = (I � T ) 1nj

nj�1X
k=0

kSk 2

(I � T )(X). Thus z belongs to the weak closure of the range of (I � T ). Let
� > 0. Since the weak closure coincides with the original closure we can �nd
u 2 X such that kz � (I � T )uk < �. Now kSn(I � T )uk ! 0 and kSnzk �
kSn(z � (I � T )u)k+ kSn(I � T )uk � C�+ kSn(I � T )uk where C = sup

n
kSnk.
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This proves that kSnzk ! 0. Thus kSnx� Snyk ! 0 which means kSnx� yk !
0, i.e. Snx! y in the norm.

Remarks: the condition that fSnxg has a weakly convergent subsequence
is satis�ed automatically if X is separable and re�exive (by Banach Alaoglu
Theorem). In particular this holds if X is a separable Hilbert space.

Let (
;F ; P; T ) be a DS with F countably generated. Then L2(P ) is a sepa-
rable Hilbert space. De�ne U : L2 ! L2 by U(f) = f � T . Then the hypothesis

of above theorem are all satis�ed and we can conclude that lim
n!1

1
n

n�1X
k=0

f � T k

exists in the norm of L2 for each f 2 L2. Hence we can view above theorem as
a generalization of von Neumann�s Ergodic Theorem to Banach spaces.
When X = L1(
;F ; P ) we have the following theorem:

Theorem

Let (
;F ; P ) be a probability space and X = L1(
;F ; P ). Let T : X ! X

be a bounded operator such that the operators Sn = 1
n

n�1X
k=0

T k; n = 1; 2; ::: map

L1 into itself. Suppose the norms of these operators are bounded both as
operators on L1 and as operators on L1. Then fSnfg converges in the norm
of X for every f 2 X if and only if kT

nfk1
n ! 0 as n!1 for every f 2 X.

We omit the lengthy proof of this theorem. [ See "Linear Operators" by
Dunford and Schwartz, Part I, p 662 (Corollary 5) for a proof].

Suppose T is a measurable map on (
;F ; P ) but T is not measure preserving.
When does the map f ! f � T map L1 into L1 and when is this linear map
bounded? We have the following:

Theorem
Let 1 � p <1. Then f ! f � T is a bounded operator on Lp if and only if

there exists C 2 (0;1) such that P (T�1(E)) � CP (E) for all meaurable sets
E and f � T 2 Lp for all f 2 Lp.
Proof: suppose there exists C 2 (0;1) such that P (T�1(E)) � CP (E)

for all E and f � T 2 Lp for all f 2 Lp.. We �rst observe that f = g a.e.
implies f � T = g � T a.e. [ If f(!) = g(!) for ! 2 A where P (Ac) = 0 then
P (T�1(Ac)) � CP (Ac) = 0 and f(T (!)) = g(T (!)) if ! 2 T�1(A)]: Next we
show that f ! f �T is bounded: For this we apply the Closed Graph Theorem.
If fn ! f in Lp and fn � T ! g in Lp then we can �nd integers nk " 1 such
that fnk ! f a.e. and fnk � T ! g a.e. If fnk(!) ! f(!) for ! 2 B with
P (Bc) = 0 then P (T�1(Bc)) = 0 and fnk(T (!)) ! f(T (!)) for ! 2 T�1(B).
Thus fnk � T ! f � T a.e. and fnk � T ! g a.e. implying that g = f � T a.e.
This proves that f ! f � T is a bounded operator on Lp. Conversely, suppose
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f ! f �T is a bounded operator on Lp. Then
Z
(IE �T )pdP � C

Z
IEdP where

C is the norm of the operator f ! f � T . Thus P (T�1(E)) � CP (E).

Remark: if the map f ! f � T is a bounded operator on Lp for some p then
it is so on every Lq; it maps positive functions to positive functions and L1

functions to L1 functions. In "Ergodic Theory of Markov Processes" by Shaul
Foguel the basic object of study is a bounded operator on L1 which is positive
and has norm � 1. This book also contains theorems on existence of invariant
measures proved using properties of such operators. A number of conditions
equivalent to the existence of an �invariant measure�for such an operator which
is equivalent to P are given.

Theorem [ Pointwise Ergodic Theorem in L1]
Suppose U is an operator of norm at most 1 on L1(= L1(
;F ; P )) which

also acts as an operator of norm at most 1 on L1. Then lim 1
n

n�1X
k=0

Ukf exists

a.e. for every f 2 L1.
Ref. Theorem 6, page 675 of Dunford and Schwartz, Part I.

APPENDIX

Existence and uniqueness of Haar measure

[Ref.: Measure Theory by Cohn]

Throughout G is a locally compact Hausdor¤ topological group. Our interest
is mainly in compact metric groups, but we prove the existence theorem in the
case of locally compact groups.

Theorem
If f : G! C is continuous and has compact support then f is left and right

uniformly continuous.
The proof is left as an exercise.

Theorem
Let � be a regular Borel measure on G. If f : G! C is continuous and has

compact support then x !
Z
f(xy)d�(y) and x !

Z
f(yx)d�(y) are continu-

ous.

Proof: exercise.

Theorem
Any open subgroup H of G is closed.
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Proof: we have GnH =
[
x=2H

(xH) which is open.

Theorem
There exists an open (hence closed) subgroup of G which is �� compact.

Proof: there exists U open such that e 2 U and
�
U is compact. There

exists a symmetric open set V such that e 2 V �
�
V � U . Let V1 = V; V2 =

V V; :::; Vn+1 = V nV; :::. Let E =
1[
n=1

Vn. Clearly E is an open subgroup of G.

It follows that E is a also closed. Note that
�
Vn is compact and

�
Vn � E. Thus

E is �� compact.
We use the following notations: xf(y) = f(x�1y):fx(y) = f(yx�1).

Theorem
Haar measure on G exists.

Proof: let K � G be compact and A � G have non-empty interior A0.

The K �
[
x

xA0 and so there is a �nite set fx1; x2; :::; xng with K �
n[
i=1

xiA
0.

Let N(K;A) be the smallest integer n for which such a �nite set exists. [ Set
N(K;A) = 0 if K = ;]. Let K0 be a �xed compact set with non-empty interior.
For each open set U containing e and each compact set K de�ne �U (K) =
N(K;U)
N(K0;U)

. We note that 0 � �U (K) � N(K;K0); �U (K0) = 1; �U (K) � �U (K
0)

if K � K 0; �U (K [ K 0) � �U (K) + �U (K
0) and equality holds in this last

inequality if KU�1 \ K 0U�1 = ;. [ For the last part let K [ K 0 �
n[
i=1

xiU

where n = �U (K [K 0). Assume that xiU intersects K [K 0 for each i. Since
, KU�1 \ K 0U�1 = ;; for each i either xiU \ K = ; or xiU \ K 0 = ;. Thus
fx1; x2; ::; xng = fxi : xiU\K = ;g[fxi : xiU\K 0 = ;g: Note thatK �

[
J

xiU

and K 0 �
[
I

xiU where I = fxi : xiU \K = ;g; J = fxi : xiU \K 0 = ;g. Since

I and J are disjoint we getN(K;U)+N(K 0; U) � #(I)+#(J) = N(K[K 0; U)].
This proves that �U (K [K 0) = �U (K) + �U (K

0) if KU�1 \K 0U�1 = ;. Let
IK = [0; N(K;K0)] and X =

Y
IK the product taken over all compact sets

K. With the product topology X is compact. Note that �U 2 X for every
open set U containing e. If V is open and e 2 V let SV = f�U : U � V;U

open, e 2 Ug�.We claim that
\
SV , where the intersection is over all open

sets V containing e, is non-empty. Since each SV is non-empty and compact
we only have to verify �nite intersection property. If V1; V2; ::; Vm are open sets
containing e then �V1\V2\:::\Vm belongs to each of the sets SV i; 1 � i � m.

We have proved the claim. Let � 2
\
SV . We claim that for any compact
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sets K;K 0 and any x 2 G we have: �(K) � 0; �(;) = 0; �(K0) = 1; �(xK) =
�(K); �(K) � �(K 0) if K � K 0; �(K [ K 0) � �(K) + �(K 0) with equality if
K \K 0 = ;. After proving this claim we de�ne ��(U) = supf�(K) : K � U;K
compactg for U open; ��(A) = inff��(U) : A � U;U openg; we show that �� is
an outer measure on the power set of G, that each Borel set is �� measurable
and that the restriction of �� to the Borel sigma �eld is a left Haar measure on
G.
Proof of the claim: we only have to prove that �(K1[K2) � �(K1)+�(K2)

with equality if K1 \K2 = ;. The map �(h) = h(K1) + h(K2) � h(K1 [K2)
is continuous on X. Since �U (K1) + �U (K2) � �U (K1 [ K2) � 0 it follows
that � is non-negative at each point of SV for any open set V containing e.
Hence �(�) � 0 which proves the �rst part of the claim. Now let K1 \K2 = ;.
There exist disjoint open sets U1; U2 such that K1 � U1 and K2 � U2. [ This
separation result holds in any Hausdor¤ space!]. We can �nd open sets V1; V2
containing e such that K1V1 � U1 and K2V2 � U2. [ If x 2 K1 there exists
neighbourhoods Sx; Tx of e such that xSx � U1 and TxTx � Sx. By compactness
K1 � x1Tx1[x2Tx2[ :::[xnTxn for some �nite subset fx1; x2; :::; xng of K1. Let
V1 = Tx1 \Tx2 \ :::\Txn . Any point of K1V1 belongs to xiTxiTxi for some i and
xiTxiTxi � xiSxi � U1]. Let V = V1 \ V2. Since K1V \K2V � K1V1 \K2V2 �
U1 \ U2 = ; we get �U (K1 [ K2) = �U (K1) + �U (K2) whenever U is open,
contains e and is contained in V �1. [ Because K1U

�1 \K2U
�1 = ;]. The map

� above is 0 on points of the type h = �U . Hence it is 0 on each SV and so it is
0 at �. This proves the claim.
Now we study �� de�ned by ��(U) = supf�(K) : K � U;K compactg

for U open; ��(A) = inff��(U) : A � U;U openg. If Un is open for each n
then ��(

[
n

Un) �
X
n

��(Un): To see this take any compact set K �
[
n

Un:

We have K �
N[
n=1

Un for some N and there exist compact sets K1;K2; :::;KN

with Ki � Ui for each i and K �
N[
n=1

Kn. [ It is enough to prove this when

N = 2 since the general case follows by induction. There exists an open set W

such that KnU2 � W �
�
W � U1. Take K1 =

�
W and K2 = KnW ]. Hence

�(K) �
NX
i=1

�(Ki) �
NX
i=1

��(Ui) �
X
n

��(Un). Taking supremum over K we

get ��(
[
n

Un) �
X
n

��(Un). Now let An; n = 1; 2::: be arbitrary and � > 0.

There exist open sets Un with An � Un and ��(An) +
�
2n > ��(Un). Now

��(
[
n

An) � ��(
[
n

Un) �
X
n

��(Un) < � +
X
n

��(An). It follows that �� is

indeed an outer measure.
Our next claim is that ��(V ) � ��(V \ U) + ��(V \ U c) for any open sets

U and V with ��(V ) <1.
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Once this claim is established we can see easily that every open set if ��

measurable: let ��(A) < 1 and � > 0. There is an open set V such that
��(A) + � > ��(V ) and A � V . Thus ��(A) + � > ��(V \ U) + ��(V \ U c) �
��(A \ U) + ��(A \ U c). Thus and sub-additivity show that ��(A) = ��(A \
U) + ��(A \ U c). Now we prove the claim. There exists a compact set K such
that K � U \ V and �(K) > ��(U \ V )� �. There is a compact set H � V nK
such that �(H) > ��(V nK) � �. Note that K \H = ;. Also V nU � V nK so
�(H) > ��(V nK) � � � ��(V nU) � �. Hence ��(V \ U) + ��(V \ U c) � 2� <
�(K) + �(H) = �(H [K) � ��(V ): It follows that every open set, and hence
every Borel set, is �� measurable. Let � be the restriction of �� to the Borel
sigma �eld.
We now prove that � is left invariant: the fact that �(xK) = �(K) shows

that ��(xU) = ��(U) and hence ��(xA) = ��(A). [Here K;U;A are typical
compact, open and arbitrary subsets].
This �nishes the proof.

Remark: it can be shown that � is regular. However this doesn�t require a
proof if the group G is a locally compact Polish space and this is the case we
are interested in. (In fact we are interested only in compact metric groups).

Theorem
Left/right Haar measure on a locally compact Polish group G is unique up to

a constant. If G is a compact metric group then there is a unique Haar measure
which is also a probability measure.

Proof: let � and � be two left Haar measures. Let g : G ! C be a
non-negative continuous function with compact support which is not identi-
cally 0. Let f : G ! C be a continuous function with compact support. We
�rst show that �(U) > 0 for any non-empty open set U . Since � is regular
there is a compact set K with �(K) > 0. [ By de�nition a Haar measure
is not identically 0!]. Since K �

[
x2G

xU there is a �nite subcover. Suppose

K �
n[
i=1

xiU . Clearly, �(xiU) > 0 for some i and hence �(U) = �(xiU) > 0.

We can now conclude that
Z
gd� > 0. [ g > 0 on some non-empty open

set]. For the �rst part of the theorem It is enough to show that

Z
fd�Z
gd�

=

Z
fd�Z
gd�

. If � is the continuous complex function with compact support on
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G�G de�ned by �(x; y) = f(x)g(yx)Z
g(zx)d�(z)

it follows that
Z Z

�(x; y)d�(y)d�(x) =

Z Z
�(y�1x; y)d�(x)d�(y) =

Z Z
�(y�1x; y)d�(y)d�(x) =

Z Z
�(y�1; xy)d�(y)d�(x)

( we have changed y to xy to get the last equality) and hence that
Z
fd� =Z

gd�

Z
f(y�1)Z

g(zy�1)d�(z)

d�(y). [ The function � de�ned here is obviously contin-

uos on G � G; its support is contained in C � DC�1 where C and D are the

supports of f and g respectively]. We have proved that

Z
fd�Z
gd�

does not depend

on � proving that �rst part of the theorem. If G is compact then �(G) and �(G)
are �nite and hence �

�(G) =
�

�(G) proving that there is a unique left invariant
probability measure in this case.

If G is compact then the unique left invariant probability measure is also the
unique right invariant probability measure. We shall not prove this here since
our interest is mainly in abelian groups.

END OF APPENDIX

APPENDIX
ANALYTIC SETS AND ISOMORPHISM THEOREMS

Borel isomorphism and analytic sets [ From Cohn�s "Measure Theory"]

A Polish space is a topological space which can be metrized to become a
complete separable metric space.
It is well known fact that a subspace of a Polish space is a Polish space i¤ it

is a G� set.
A subset A of a Polish space X is called analytic if it is the continuous image

of a Polish space.

Theorem
Open sets and closed sets in a Polish space are analytic.

Proof: open subsets and closed subsets are themselves Polish.

Theorem
Countable unions and countable intersections of analytic sets are analytic.

Proof: let fn : Zn ! An be continuous and onto where Zn is a Polish space.
Let Z =

[
(Zn � fng) and declare that a set B � Z is open if, for each n,
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B\ (Zn�fng) = Un�fng for some open set Un in Zn. This de�nes a topology
on Z. Let dn be a metric for the topology of Zn which makes it complete
and separable. Assume (w.l.o.g.) that dn � 1. De�ne d(z1; z2) = dn(x; y) if
z1 = (x; n) and z2 = (y; n) and de�ne d(z1; z2) to be 1 if z1; z2 are not of this
type. Then (Z; d) is complete and separable and the map � : Z !

[
n

An de�ned

by �((x; n)) = fn(x) is a continuous surjective map. This proves that
[
n

An is

analytic. Now let H =
1Y
n=1

Zn and de�ne D(fxng; fyng) =
1X
n=1

1
2n

dn(xn;yn)
1+dn(xn;yn)

.

(H;D) is a complete separable metric space and K = ffxng 2 H : fn(xn) =
f1(x1)g is a closed subset of H. Hence K is a Polish space and the range of the
map fxng ! f1(x1) is

\
An. Hence

\
An is also analytic.

Theorem
Every Borel subset of a Polish space is analytic.

Lemma:
Let (X; �) be any Hausdor¤ topological space. The smallest class of sets

containing all open sets and all closed sets closed under countable intersections
and countable disjoint unions coincides with the Borel sigma �eld.

Proof: let B be the class mentioned in the statement. Let B0 = fA 2 B :
Ac 2 Bg. If fAng � B0 then

[
n

An = A1 [ (A2nA1) [ (A3nfA1 [ A2g) [ ::: is

a disjoint union of sets in B and hence it belongs to B: Since B is closed under
complementation also it is a sigma �eld. Since it contains open sets it contains
all Borel sets. The Borel sigma �eld is therefore contained in B. Since the Borel
sigma �eld also satis�es the properties satis�ed by B it follows that B � Borel
sigma �eld.
The theorem follows immediately: the class of analytic sets also satis�es

above properties and hence it contains B, which is the same as the Borel sigma
�eld.

Theorem
Product of analytic sets is analytic.

Proof: let An be an analytic set in a Polish space Zn for n = 1; 2; :::. We

have to show that
1Y
n=1

An is an analytic set in the Polish space
1Y
n=1

Zn. De�ne

f :
1Y
n=1

Zn !
1Y
n=1

An by f(fzng) = (fn(zn)) where fn : Zn ! An is continuous

and onto.

This map is continuous and the image of
1Y
n=1

Zn under it is
1Y
n=1

An.
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Theorem
Let X and Y be Polish and A � X analytic. Let f : A ! Y be Borel

measurable, A1 be analytic in X and A2 be analytic in Y . Then f(A\A1) and
f�1(A2) are analytic.

Remark: taking A = X we see that images and inverse images of analytic
sets under Borel measurable maps are analytic.

Proof: let �2(x; y) = y 8(x; y) 2 X � Y . We claim that the graph Gf =
f(a; f(a)) : a 2 Ag of f is a Borel subset of A�Y . Indeed (a; y)! ((f(a); y) is
Borel measurable from A� Y ! Y � Y and the graph of f is the inverse image
under this map of � = f(y1; y2) 2 Y � Y : y1 = y2g. Hence Gf = (A� Y ) \B
for some Borel set B in X�Y . Now Gf \(A1�Y ) is an analytic subset of X�Y
because it is the intersection of two analytic sets. Let � : Z ! Gf \ (A1�Y ) be
continuous and onto where Z is a Polish space. Now (�2 � �)(Z) = f(A \ A1)
and hence this last set is analytic. Now let �1(x; y) = x. The set Gf \ (X�A2)
is an analytic set in X � Y and f�1(A2) = �1(Gf \ (X �A2)). Hence f�1(A2)
is analytic.

Theorem
Any Polish space is the continuous image of NN (with product topology).

Proof: recall that NN is complete and separable under the metric d(fnkg; fmkg) =
1X
k=1

1
2k

jnk�mkj
1+jnk�mkj d(fnkg; fmkg) < 1

2N+1 implies that (the �rst N terms in the

sum are necessarily 0) and nj = mj for 1 � j � N . Let d be a complete
separable metric for a Polish space X. With each �nite sequence (n1; n2; :::; nk)
of positive integers we associate a set C(n1; n2; :::; nk) in such a way that each
of these is a non-empty closed set, the diameter of C(n1; n2; :::; nk) does not

exceed 1=k; C(n1; n2; :::; nk�1) =
1[
j=1

C(n1; n2; :::; nk�1; j) and X =

1[
n1=1

C(n1).

[To see that such sets exists we take a countable dense set fxng and de�ne
C(j) to be the closed ball with center xj and radius 1

2 . Suppose we have
constructed C(n1; n2; :::; nk). We can write this set as a union of a count-
able number of closed balls of radius 1

2(k+1) each and we denote these balls
by C(n1; n2; :::; nk; j); j = 1; 2; :::. This completes the construction]. Now let
fn1; n2; :::g be an element of NN. Then the intersection of the sets C(n1; n2; :::; nk)
over k is a singleton set fxg. we consider the map fn1; n2; :::g ! x from NN
into X: It is clear from the properties of the sets C(n1; n2; :::; nk) that this map
is onto X.
Suppose x and y are the images of fnkg and fmkg and d(fnkg; fmkg) <

1
2N+1 . Then nj = mj for 1 � j � N . In particular x and y both belong to
C(n1; n2; :::; nN ) = C(m1;m2; :::;mN ) which implies that d(x; y) � 1

N . This
proves continuity of the map fn1; n2; :::g ! x. This completes the proof.
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Corollary
If A is a non-empty analytic set in a Polish space X then A is a continuous

image of NN.

Proof: this is obvious from the de�nition of analytic sets and above theorem.

Theorem
Let X be Polish and A � X. Then A is analytic if and only if there is a

closed set C in NN �X whose projection (on the second coordinate) is A.

Proof: �if�part is obvious. Suppose A is analytic. By above corollary there
is a continuous map f from NN onto A. The graph Gf of f is a closed subset
of NN �X and its projection on the second coordinate is A.

A topological space is zero dimensional if there is a basis consisting of clopen
( i.e. closed and open) sets. Discrete spaces and subspaces/products/disjoint
unions of zero dimensional spaces are zero dimensional. NN and f0; 1gN are zero
dimensional:

Theorem
If X is Polish and A is a Borel set in X then there is a zero dimensional

Polish space Z and a continuous one-to-one map f : Z ! X with f(Z) = A.

The map fang !
1X
n=1

an
2n is a continuous map of the zero dimensional

space f0; 1gN onto [0; 1]. Restricting it to sequences with in�nitely many 10s
together with the point f0; 0; :::g we get a continuous injective map of a zero
dimensional space onto [0; 1]. Also the domain of this restriction is a G� in
f0; 1gN ( since a countable set is an F�) and hence it is Polish. This proves
that [0; 1] is a continuous injective image of a zero dimensional Polish space Z.
It follows that [0; 1]N is a continuous injective image of the zero dimensional
Polish space ZN. [ Because a product of zero dimensional Polish spaces is a
zero dimensional Polish space]. Let � : ZN ! [0; 1]N be a 1-1 continuous map
with range [0; 1]N. Now let X be a Polish space. X is homeomorphic to a
subspace of [0; 1]N. [ If fxng is dense in X and d is a complete metric with
d(x; y) � 1 for all x; y then x ! fd(x; xn)g is the desired homeomorphism].
The range of this homeomorphism is Polish and hence it is a G� in [0; 1]N. Let
� : X ! S � [0; 1]N be a homeomorphism ( onto S) where S is a G� in [0; 1]N.
Now ��1(S) is a G� in ZN (because S is): Thus, ��1(S) is Polish and zero
dimensional. Note that ��1(�(��1(S))) = X and ��1 � � is continuous and
one-to-one. This proves the theorem when A = X. Consider the class G of all
Borel sunsets of X that are continuous one-to-one images of zero dimensional
Polish spaces. All open and closed sets in X belong to this family. We claim
that countable intersections and countable disjoint unions of sets in G belong
to G. Once this is proved we can conclude that G contains every Borel set and
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the proof of the theorem would be complete. Let fAng � G. Let Zn be a
zero dimensional Polish space and fn : Zn ! An be one-to-one, continuous and
onto. Let � = ffzng 2

Y
Zn : fn(zn) = f1(z1) 8ng and de�ne f : � ! X

by f(fzng) = f1(z1). This gives a one-to-one continuous map of � onto
\
n

An

and hence
\
n

An 2 G. If Z0 =
[
n

(Zn � fng) is the �disjoint union� of Z 0ns

(see the proof of the fact that disjoint union of analytic sets are analytic for
details) and if f : Z0 ! X is de�ned by f(zn � fng) = fn(zn) then we get
a one-to-one continuous map of Z0 onto

[
n

An provided A0ns are disjoint and

hence
[
n

An 2 G in this case.

Lemma
Let X be a zero dimensional separable metric space and U be an open subset

which is not compact. Let � > 0. We can �nd an in�nite sequence of disjoint
clopen (non-empty) sets A1; A2; ::: each having diameter less than � such that
U =

[
n

An.

Proof: let fUi : i 2 Ig be an open cover of U with no �nite subcover.
Consider the collection G of all clopen sets which are contained in some Ui and
which have diameter less than �. Every point of U lies in an open ball of radius
less than �=2 contained in U \Ui and there is a clopen set containing the point
and contained in this open ball. Hence U coincides with the union of all the
members of G. By separability we can write this union as a disjoint union, say[
n

Vn. Writing this union as V1 [ (V2nV 1):::(VnnfV1 [ V2 [ ::: [ Vn�1g) [ ::: we

see that U is the union of disjoint clopen (non-empty) sets each having diameter
less than �. Note that each of these clopen sets is a subset of some Ui. Since
fUig has no �nite subcover our collection fAng is necessarily in�nite.

Lemma
Let C be the set of all condensation points ( i.e. points such that every

neighbourhood of them is uncountable) of a separable metric space X. Then C
is closed and XnC is at most countable.

Proof: let fUng be a countable basis for X. Note that x =2 C i¤ B(x; r) is
countable for some r i¤ there exists Un such that x 2 Un and Un is countable.
In this case every point of Un is also in XnC and hence XnC is open and C
is closed. It is also clear that XnC is a (countable) union of countable sets Un
and hence it is countable.

Theorem
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Let X be Polish and B be an uncountable Borel subset. There exists a
continuous one-to-one map f : NN ! X whose range f(NN) is contained in B
such that Bnf(NN) is at most countable.

Proof: there exists a zero dimensional Polish space Z and a continuous
injective map g : Z ! X whose range is B. We claim that there is a continuous
injective map � : NN ! Z such that Zn�(NN) is countable. Once this is proved
the function f = g �� has the desired properties. The set C of all condensation
points of Z is Polish and zero dimensional. Also ZnC is countable. Note that
every point of C is a condensation point of C. [ Because ZnC is countable]. Let
d be a complete metric for C. We construct sets A(n1; n2; :::; nk) for k � 1 and
n0is 2 N as follows: Let U be obtained from C by removing one point. Clearly
U is open and non-compact. By one of the lemmas above U is the union of
an in�nite sequence of disjoint sets each of which is non-empty and clopen and
has diameter less than 1. Call these sets A(n1); n1 = 1; 2; :::. Note that each
point of A(n1) is a condensation point of it. [ This is because these sets are
open: if x 2 A(n1) and V is an open set containing x then A(n1) \ V is also a
neighbourhood of x and so it contains uncountable many points of C]: We can
repeat this construction by replacing C by any of the sets A(n1): By an induction
argument we can construct sets A(n1; n2; :::; nk) with the following properties:
these sets are clopen nonempty, diameter of A(n1; n2; :::; nk) is less than 1

k and
A(n1; n2; :::; nk) is the union of A(n1; n2; :::; nk; nk+1) together with a singleton.
De�ne h : NN ! Z by h(fnkg) = z where fzg =

\
k

A(n1; n2; :::; nk). It is easy

to see that this map is injective and continuous. Also h(NN) � C and Cnh(NN)
contains only the points removed in the construction of the sets A(n1; n2; :::; nk).

Corollary
Any uncountable Borel subset B of a Polish space X contains a homeomor-

phic copy of f0; 1gN:

Proof: There is a continuous injective map f : NN ! X whose image is
contained in B. Restriction of f to f0; 1gN gives the required homeomorphism.

De�nition: let X be Polish. A subset A of NN �X is universal for a family
of subsets of X is every set in the family is a section of A.

Lemma
Let X be a separable metric space. There is an open A set in NN�X which

is universal for the class of all open sets in X. Also, there is a closed C set in
NN �X which is universal for the class of all closed sets in X.

Proof: consider f;; V1; V2; :::g where fV1; V2; :::g is a basis for X. Let A =[
k

fffn1; n2; :::g; xg : x 2 Vnkg
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=
[
k

fA(k; n) � Vng where A(k; n) = fffn1; n2; :::g 2 NN : nk = ng. Since

A(k; n) is open it follows that A is open. If
fn1; n2; :::g 2 NN then the section of A by fn1; n2; :::g is

[
k

Vnk and these

unions exhaust all open sets in X. Ac is a closed set whose sections exhaust all
closed sets in X.

Theorem
If X is Polish then there is an analytic set A in NN �X which is universal

for the class of all analytic sets in X.

Proof: there is a closed subset C of NN � NN � X which is universal for
the class of closed sets in NN � X. Let A = �(C) where � : NN � NN � X !
NN �X is de�ned by �(fm1;m2; :::g; fn1; n2; :::g; x) = (fm1;m2; :::g; x). Being
a continuous image of a Polish space A is analytic. For each fm1;m2; :::g the
section of A by fm1;m2; :::g is nothing but the projection on X of the section
of C by fm1;m2; :::g. Recalling that analytic sets in X are precisely projections
of closed sets in NN �X we conclude that A is universal for analytic sets.

Theorem
There is an analytic in NN set which is not Borel.

Proof: let A be an analytic set in NN�NN which is universal for the class of
all analytic sets in X. Let S = ffn1; n2; :::g : (fn1; n2; :::; g; fn1; n2; :::g) 2 Ag.
This is the projection on NN of A\� where � is the diagonal of NN�NN. Since
� is closed it follows that S is analytic. Suppose S is Borel. Then so is Sc.
Thus Sc is analytic and it must be a section of A. Let fm1;m2; :::g 2 NN be
such that

Sc = ffn1; n2; :::g : (fm1;m2; :::g; fn1; n2; :::g) 2 Ag. (*)
Either fm1;m2; :::g 2 S or fm1;m2; :::g 2 Sc. In the �rst case (fm1;m2; :::; g; fm1;m2; :::g) 2

A which implies fm1;m2; :::; g 2 Sc by (*). In the second case fm1;m2; :::g 2
Sc = ffn1; n2; :::g : (fm1;m2; :::g; fn1; n2; :::g) 2 Ag and so (fm1;m2; :::g; fm1;m2; :::g) 2
A and the de�nition of S shows that fm1;m2; :::; g 2 S, a contradiction again.

Theorem
Any uncountable Polish space has an analytic subset that is not Borel.

Proof: let A be an analytic set in NN which is not Borel. SupposeX is Polish,
uncountable and every analytic subset of X is Borel. There is a continuous
injective map � : NN ! X such that Xn�(NN) is at most countable. �(A)
is analytic and hence Borel. It follows that A = ��1(�(A)) is Borel too, a
contradiction.
In particular not every analytic subset of R is a Borel set.
We now prove a separation theorem for analytic sets and use it prove a Borel

isomorphism theorem.
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Let X be a Polish space and A1; A2 � X. If there exist disjoint Borel sets
B1; B2 such that Ai � Bi:i = 1; 2 we say A1 and A2 are separated by Borel sets.

Theorem
Disjoint analytic sets in Polish space can always be separated by Borel sets.

Proof: claim 1: if Cn and D can be separated by Borel sets for each n

then
[
n

Cn and D can be separated by Borel sets. Claim 2: if Cn and Dm

can be separated by Borel sets for each n and m then
[
n

Cn and
[
m

Dm can

be separated by Borel sets. Proofs of these two claims are elementary and we
omit the details. Now let A1 and A2be disjoint analytic sets in a Polish space
X. There exist continuous maps f; g : NN ! X such that f(NN) = A1 and
g(NN) = A2. Suppose, if possible, we cannot separate A1 and A2 by Borel
sets. Let En1;n2;::::;nk = ffm1;m2; :::g 2 NN : mi = ni for 1 � i � kg. Note
that

[
n

f(En) = f(NN) = A1 and
[
n

g(En) = g(NN) = A2. Hence there exist

n1 and m1 such that f(En1) and g(Em1) cannot be separated by Borel sets.
Since f(En1) =

[
n2

f(En1;n2) and g(Em1
) =

[
m2

g(Em1;m2
) we can �nd n2 and

m2 such that f(En1;n2) and g(Em1;m2
) cannot be separated by Borel sets. By

induction we can generate sequences fn1; n2; :::g and fm1;m2; :::g such that for
any k f(En1;n2;::;nk) and g(Em1;m2;:::;mk

) cannot be separated by Borel sets.
If f(fn1; n2; :::g) 6= g(fm1;m2; :::g) then these two points can be separated by
disjoint open sets which implies that f(fn1; n2; :::; nNg) and g(fm1;m2; :::;mNg)
can be separated by disjoint open sets for N su¢ ciently large. [ If U is open and
contains f(fn1; n2; :::g) then the neighbourhood f�1(U) of fn1; n2; :::g contains
all points fn01; n02; :::g with n0i = ni; 1 � i � N provided N is su¢ ciently large.
Similar result holds for a neighbourhood of fm1;m2; :::g]. We have proved that
f(fn1; n2; :::g) = g(fm1;m2; :::g) contradicting the fact that the left side belongs
to A1; the right side to A2 [and A1 and A2 are disjoint].

Corollary
If A1; A2; :::; An are disjoint analytic sets in a Polish space we can �nd disjoint

Borel sets B1; B2; :::; Bn such that Ai � Bi for each i:

Proof: this is elementary.

Theorem
If A and Ac are both analytic then A is a Borel set.

Proof: there exist disjoint Borel sets B1; B2 such that A � B1 and Ac � B2.
But then Ac � B2 � Bc1 and so B1 � A forcing A to be equal to the Borel set
B1.

Theorem
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Let X and Y be Polish spaces and f : X ! Y . Then f is Borel measurable
if and if only if its graph is a Borel set in X � Y .

Proof: Gf = g�1(�) where g : A � Y ! Y � Y is de�ned by g(a; y) =
(f(a); y) and � = f(y; y) : y 2 Y g. Thus Gf is Borel if f is Borel measurable.
Suppose Gf is Borel and B is any Borel set in Y . The disjoint analytic sets
Gf \ (X �B) and Gf \ (X �Bc); when projected on the �rst coordinate, yield
disjoint analytic sets and so we can �nd disjoint Borel sets E1; E2 containing
these projections. However these two projections are nothing but f�1(B) and
f�1(Bc). Thus f�1(B) � E1 and f�1(Bc) � E2. From the disjointness of E1
and E2 it follows easily that f�1(B) = E1 \A. Hence f is Borel measurable.

Theorem
Let X and Y be Polish, A � X Borel and f : A ! Y be Borel measur-

able. Suppose f is injective and B = f(A) is a Borel set. Then f�1 is Borel
measurable.

Proof: think of f�1 as a map from Y into X. Gf�1 = �(Gf ) where �(x; y) =
�(y; x). Since Gf is Borel and � = ��1 is Borel measurable it follows that Gf�1
is a Borel set and hence f�1 is Borel measurable.

Theorem
Let A and B be Borel sets in Polish spaces. Then A and B are Borel

isomorphic if and only if they have the same cardinality.

Proof: suppose A and B are Borel sets in Polish spaces X and Y with the
same cardinality. If these sets are countable they are clearly Borel isomorphic,
so we assume that they are uncountable. There exist continuous injective maps
f : NN ! A; g : NN ! B such that Anf(NN) and Bng(NN) are at most count-
able. It is clear that these two countable sets are Borel sets (and so are their
complements) and f : NN ! f(NN); f : NN ! f(NN) are Borel isomorphisms
by previous theorem. Thus g � f�1 : f(NN) ! g(NN) is a Borel isomorphism.
We can extend this to a Borel isomorphism of A onto B using an arbitrary
bijection on their complements provided Anf(NN) and Bng(NN) are in�nite. If
they are �nite we can remove countable in�nite sets from the ranges of f and
g and combine them with Anf(NN) and Bng(NN). We leave it to the reader to
�ll in the details of this argument.

Theorem
Let X and Y be Polish. Let A � X be Borel and f : A ! Y be Borel

measurable and injective. Then f(A) is a Borel set.

Proof: we claim that there is a Borel measurable function g : Y ! X
such that g(Y ) � A and g � f is the identity on A: Once this claim is proved
we can conclude that f(A) = fy 2 Y : f(g(y)) = yg is a Borel set since
the identity map of Y and the map f � g are Borel measurable on Y . We
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now prove the claim. Let d be a complete metric for X and x0 2 A. We
de�ne a sequence fgng of functions from Y to X as follows: for each n let
fAn;1; An;2; :::g be a partition of A into non-empty Borel sets of diameter at
most 1

n . Let xn;k 2 An;k. Since ff(An;k) : k = 1; 2; :::g are disjoint analytic
sets we can separate them by disjoint Borel sets fBn;k : k = 1; 2; :::g. Let

gn(y) =
X
k

xn;kIBn;k
+ x0I

Y n
[
k

Bn;k

. Each gn is a Borel measurable function

from Y into A. If x 2 A then d(x; gn(f(x))) � 1=n. In fact x 2 An;k for some k
and f(x) 2 f(An;k) � Bn;k so gn(f(x)) = xn;k; thus d(x; gn(f(x))) � diameter
of An;k � 1=n. Thus lim

n
gn(y) exists if y 2 f(A). De�ne g(y) to be this limit if

it exists and x0 if it doesn�t. Then d(x; g(f(x))) = 0 for all x 2 A. This proves
the claim.
Our next aim is to show that analytic sets in Polish spaces are universally

measurable,i.e. they belong to the completion of the Borel sigma �eld w.r.t. any
�nite measure �.

Let A be an analytic subset of a Polish space X. Let � be a �nite pos-
itive Borel measure on X. Let ��(A) = inff�(B) : A � B;B Borelg. We
claim that for any � > 0 we can �nd a compact set K such that K � A and
�(K) � ��(A) � �. Suppose the claim is proved. We can �nd B Borel such
that A � B and ��(A) + � > �(B). Thus, taking � = 1=n we get compact sets
Kn and Borel sets Bn with Kn � A � Bn and �(BnnKn) = �(Bn)� �(Kn) <

��(A) + 1=n � f��(A) � 1=ng = 2=n. Now A = f
[
Kng [ fAn

[
Kng and

fAn
[
Kng �

\
fBnnKng. Since �(

\
fBnnKng) = 0 it follows that A is ��

measurable. Thus it remains only to prove the claim. There is a continuous map
f : NN ! A which is surjective. Let In1;n2;:::;nk = ffm1;m2; :::g 2 NN : mi � ni
for 1 � i � kg. We now show that there exist positive integers n1; n2; ::: with
��(f(In1;n2;:::;nk)) > ��(A) � � for all k. [ It is not obvious that this proves
our claim!]. Since ��(f(In)) " ��(A) we can �nd n1 such that ��(f(In1)) >
��(A) � �. Since In1 =

[
In1;n2 we can �nd n2 such that ��(f(In1;n2)) >

��(A) � �. Induction produces n1; n2; ::: with ��(f(In1;n2;:::;nk)) > ��(A) � �

for all k. Let K = f(I) where I =
\
k

In1;n2;:::;nk . K is compact because I

is compact in NN. It remains to show that ��(K) � ��(A) � �. We claim
that K =

\
k

[f(In1;n2;:::;nk)]
�. Let d be a complete separable metric for X:

Let x 2
\
k

[f(In1;n2;:::;nk)]
�. For each k there exists m(k) 2 In1;n2;:::;nk such

that d(x; f(m(k))) < 1=k. By a diagonal procedure we can extract a subse-
quence fm(kj)g of fmkg which converges to some m 2 NN. Clearly m 2 I and
f(m(kj)) ! f(m) so d(x; f(m)) = 0. Thus x = f(m) 2 K. Thus K contains\
k

[f(In1;n2;:::;nk)]
�: Obviously K �

\
k

[f(In1;n2;:::;nk)]
� and we have proved
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that K =
\
k

[f(In1;n2;:::;nk)]
�. Now [f(In1;n2;:::;nk)]

� is closed and contains

f(In1;n2;:::;nk). Hence �([f(In1;n2;:::;nk)]
�) � ��(f(In1;n2;:::;nk)) > ��(A) � �:

Since [f(In1;n2;:::;nk)]
� is decreasing we have �(K) = lim�[f(In1;n2;:::;nk)]

� �
��(A)� � which proves our claim.
We have proved the following:

Theorem
Any analytic subset of a Polish space is universally measurable.

Remark: if A is a Borel set in R2 then the projection of A on the �rst (or
second) coordinate is analytic, hence universally measurable, but it need not be
a Borel set. To see that the projection need not be Borel we prove the following:

Theorem
If X is a Polish space and A � X then the following are equivalent:

a) there is a Borel set in X �X whose (�rst) projection is A
b) there is a Polish space Y and a Borel set in X�Y whose (�rst) projection

is A
c) there is a continuous map from NN into X with range A
d) there is a closed set in X � NN whose projection is A
e) for any uncountable Polish space Y there exists a G� set in X � Y whose

projection is A
f) A is analytic

Note that if A is an analytic set in R which is not Borel then A is the
projection of a Borel set in R � R by f) implies a); hence there is a Borel set
in R2 whose projection on R is not Borel. In fact there is a Closed set in R2
whose projection on R is not Borel. A proof is given below.

Proof: any analytic set is a continuous image of a Polish space and any
Polish space is a continuous image of NN. Hence f) implies c). Since NN is a
Polish space c) implies f). a) implies b) is obvious. Let b) hold, say A = p(B);
B Borel in X � Y , p being the projection map of X � Y onto X. Since B is
analytic it is a continuous image of a Polish space and any Polish space is a
continuous image of NN (by an earlier theorem). Hence there is a continuous
map � : NN ! X � Y with range B. Now A = p(�(NN)) and this proves c)
since p � � is continuous. c) implies d): let f : NN ! X be continuous with
range A. Then Gf is closed in NN � X. Its projection on X is A. Applying
the homeomorphism (a; x)! (x; a) to Gf and then projecting it will give us a
closed set in X � NN whose projection is A. d) implies e): let � : NN ! Y be
a homeomorphism into Y . [This follows from a theorem of Mazurkiewicz which
is proved below. ]. The range E of � is a G� in Y because it is Polish. Let C
be a closed set in X � NN whose projection is A. f(x; �(a)) : (x; a) 2 Cg is a
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G� set in X � Y whose projection is A. [ If C =
1\
n=1

Wn and E =
1\
n=1

Vn with

Wn and Vn for each n then f(x; �(a)) : (x; a) 2 Cg is the intersection of the sets
f(x; �(a)) : (x; a) 2Wn; �(a) 2 Vng which is open in E. Since E is itself a G� in
Y it follows that f(x; �(a)) : (x; a) 2 Cg is a G� set in X � Y ]:Since e) implies
a) is obvious the proof is complete.

Theorem [ Mazurkiewicz]
NN is homeomorphic to any G� subset S of a zero dimensional (z.d.) Polish

space X such that S and XnS are both dense in X.

Corollary
NN is homeomorphic to a subset of R. In fact every uncountable Polish space

contains a homeomorphic copy of NN.
Proof of the corollary: let X be the set of all irrational numbers. Since X is

a G� in R is it Ploish. It is z.d. because f(�; �) \X : � < �; � 2 Q; � 2 Qg is
a clopen basis for X. Let S = XnC where C is a countable dense subset of X.
Then S and XnS are dense in X and S is a G�. The theorem implies that NN
is homeomorphic to S.
For the second part note that every uncountable Polish space contains a

homeomorphic copy of f0; 1gN.
The set S is homeomorphic to a subset of f0; 1gN via dyadic expansion.

Proof of the theorem: we can write S as G1 \ G2 \ ::: where each Gn is
open and Gn+1 � Gn 8n. Since S is not closed there exists j1 such that Gj1
is not closed. Since Gj1 is open we can write it as A1 [ A2::: where each Ak
is a non-empty clopen set, the diameter of each Ak does not exceed 1 and A0ks
are disjoint. [ The fact that there are in�nitely many non-empty A0ks follows
from the fact that their union Gj1 is not closed]. Now �x k and consider the
clopen set Ak. We claim that Ak \ Gj is not closed for some j � 2. Suppose
this is false. Then S \Ak = Ak \G2 \G3 \ ::: is closed. If x 2 AknS then there
exists a sequence in S \Ak converging to x. [ This follows from the hypothesis
since Ak is a non-empty open set]. This is a contradiction. Hence Ak \ Gj is
not closed for some j = j2 � 2. We can write Ak \ Gj2 as a disjoint union
of sets Ak1; Ak2; ::: each of which is clopen and non-empty with diameter not
exceeding 1

2 . Now for each Akj there exists j2 � 3 such that Akj \ Gj2 is not
closed. We get a collection fAkjlg of non-empty clopen sets with diamter of
Akjl not exceeding 1

3 whose union is Akj \ Gj2 . By induction we construct
copen sets Ak1k2:::kn . Let x 2 S. Then x 2 Gjn for each n. Hence there exist

k1; k2; ::: such that x 2
\
n

Ak1k2:::kn . This intersection is a singleton set. The

map � : x! fk1; k2; :::g is a bijective map from S into NN. [ If x 2
\
n

Ak1k2:::kn

then x 2 Gjr for each r, hence x 2 S]. Suppose xj ! x. Let k1 be such that
x 2 Ak1 . Since Ak1 is open xj 2 Ak1 for j su¢ ciently large. Hence the �rst
coordite of �(xj) converfges to the �rst coordinate of �(x). Clearly the same is
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true of all coordinates which proves continuity of �. Continuity of ��1 follows
easily from the fact that diameter of Ak1k2:::kn tends to 0 as n!1.

Corollary
There exists a closed set C in R2 whose projection on the �rst coordinate is

not Borel.

Proof: there exists an analytic set A in R which is not Borel. A is the image
of NN under a continuous real . valued map f . Thje graph Gf of f is a closed
set in NN � R. Regarding NN as a subset of R (possible by previous corollary)
we get a closed set C in R2 whose projection on the �rst coordinate is A which
is not Borel).

An isomorphism theorem for measure algebras

Theorem
Any separable non-atomic measure algebra is isomorphic to the measure

algebra of Lebesgue measure on (0; 1).

Here are the de�nitions of the terms used in this theorem: let (
;F ; P )
be a probability space and Z the metric space of equivalence classes of sets
in F under the equivalence relation A~B if P (A�B) = 0 with the metric

d(A;B) = P (A�B)(=

Z
jIA � IB j dP . We de�ne set theoretic operations of

unions, intersections and complements in Z in the obvious way. (e.g. [A]c = [Ac]
where [A] stands for the equivalence class of A). This space is the measure al-
gebra associated with the probability space (
;F ; P ). We note that if F is
countable generated then the metric space Z is separable: if A1; A2; ::: generate
F then the �eld generated by these sets is countable and dense. Conversely if
there is a countable dense set f[An]g in Z then, given A 2 F there exist integers
n1 < n2 < ::: such that

Z ���IA � IAnk

��� dP < 1=k. Thus IAnk
! IA in L1 and we

also have a.e. convergence along a subsequence. It follows that IA = IB a.e. for
some B belonging to the sigma �eld generated by A1; A2; :::. We call the mea-
sure algebra separable when this last condition holds. Non-atomic means that
P (A) > 0 implies 0 < P (B) < P (A) for some measurable set B contained in
A. In this case 0 < a < �(A) implies �(B) = a for some measurable set B con-
tained in A. An isomorphism of measure algebras is a bijection that preserves
complements and countable unions as well as measures.

Lemma 1
Let fAn;1; An;2; :::; An;kng; n = 1; 2; ::: be a decreasing sequence of partitions

of 
 by measurable sets and suppose this sequence is dense in the sense A
measurable and � > 0 imply there exists a positive integer N and a set B which
is a union of some of the sets AN;1; AN;2; :::; AN;kN such that P (A�B) < �. If
P is non-atomic then max

1�j�kn
P (An;j)! 0.
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[ The partitions fAn;1; An;2; :::; An;kng; n = 1; 2; ::: are said to be decreasing
if each An;j is a union of some of the sets fAn+1;1; An+1;2; :::; An+1;kn+1g. Note
that f max

1�j�kn
P (An;j)g is decreasing in this case].

Proof: suppose, if possible, max
1�j�kn

P (An;j) # � > 0. There exists j1 � k1

such that max
1�j�kn

P (An;j \ A1;j1) � �. [ If this is false then for 1 � j � kn we

can choose k such that An;j � A1; j1 and hence P (An;j) = P (An;j \A1;j1) < �.
This contradicts the fact that max

1�j�kn
P (An;j) � �]. Now, if n � 2 there exists

j2 � k2 such that max
1�j�kn

P (An;j \A1;j1 \A1;j2) � �. [ The sets An;j \A1;j1 ; 1 �
j � kn form a partition of A1;j1 and max

1�j�kn
P (An;j \ A1;j1) � �. The partition

An;j \A1;j1 ; 1 � j � kn is �ner than A2;j \A1;j1 ; 1 � j � k2 and hence the �rst
step can be applied to the space A1;j1 with the restriction of P to this set to
conclude that there exists j2 � k2 with max

1�j�kn
P (An;j \A1;j1 \A1;j2) � �. ( The

fact that P (
) = 1 we not used in the �rst step)]. Repeating this we get integers
ji � ki; i = 1; 2; ::: such that for any positive integer p max

1�j�kn
P (An;j \ A1;j1 \

A1;j2 :::\A1;jp) � � if n � p. In particular P (A1;j1 \A1;j2 :::\A1;jp) � � for all p
and so P (A1;j1 \A1;j2 \ :::) � �. Let E = A1;j1 \A1;j2 \ ::: so that P (E) � �. By
hypothesis there exists a measurable set F � E such that 0 < P (F ) < P (E).
Let 0 < � < minfP (F ); P (E) � P (F )g: By hypothesis there exists a positive
integer N and a set B which is a union of some of the sets AN;1; AN;2; :::; AN;kN
such that P (F�B) < �. However E � B or E\B = ;. [ E � AN;jN so for each
j � kN either E � AN;j or E \AN;j = ;. Since B is a union of some of the sets
AN;1; AN;2; :::; AN;kN we get E � B or E\B = ;]. If E � B we get (F � B) and
P (BnF ) < � and P (E) � P (B) < �+ P (F ) < fP (E)� P (F )g+ P (F ) = P (E)
a contradiction. If E \ B = ; then F \ B = ; and we get P (F ) + P (B) =
P (F�B) < � � P (F ) a contradiction again. This completes the proof.

Lemma 2
Let X = [0; 1];B the Borel sigma �eld and m the Lebesgue measure. If

f0; xn;1; xn;2; :::; xn;kng is a sequence of partitions of [0; 1] each �ner than the
previous one with max

2�j�kn
fxn;j � xn;j�1g ! 0 as n ! 1 then the sequence of

partitions ff[xn;j�1; xn;j) : 1 � j � kng : n = 1; 2; :::g is dense.
[ In order that we really have partitions of X we have to modify the interval

[xn;j�1; xn;j) to [xn;j�1; xn;j ] when j = kn. We shall ignore this (insigni�cant)
point].

Proof: let � > 0 and choose N such that max
2�j�kN

fxN;j � xN;j�1g < �=2.

Let (a; b) be any open interval contained in X: Let j1 be such that a 2
[xN;j1�1; xN;j1). Call [xN;j1�1; xN;j1) as E1. If b =2 E1 consider the intervals
[xN;j1 ; xN;j1+1); [xN;j1+1; xN;j1+2); :::; [xN;j1+l�1; xN;j1+l) where l is such that
b 2 [xN;j1+l�1; xN;j1+l)n[xN;j1+l; xN;j1+l+1). Let B be the union of the intervals
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[xN;j1 ; xN;j1+1); [xN;j1+1; xN;j1+2); :::; [xN;j1+l�1; xN;j1+l);i.e. B = [xN;j1 ; xN;j1+l).
Clearly m((a; b)�B) � 2 max

2�j�kN
fxN;j � xN;j�1g < �. It follows from this that

the conclusion holds if (a; b) is replaced by a �nite disjoint union of half-closed
intervals or, more generally, by a Borel set.
We are now ready to prove the isomorphism theorem. Let fEng be dense

in the measure algebra of a non-atomic separable probability space (
;F ; P ).
For �xed N the sets fA1 \ A2 \ ::: \ AN : Ai = Ei or Ai = Eci for each ig is
partition of 
 and these partitions become �ner and �ner as N increases. Also,
this sequence is dense. [The sigma algebras generated by these partitions are
increasing, their union is an algebra and this algebra generates F ]: By Lemma1
we conclude that max

1�j�kn
P (An;j) ! 0 where the N � th partition has been

denoted by fAN;1; AN;2; :::; AN;kN g. We begin by partitioning [0; 1] by points
0 < x1;1 < x1;2 < :::; x1;k1 with x1;j � x1;j�1 = P (A1;j) for each j: We then
form a �ner partition whose subintervals have lengths P (A2;j); 1 � j � k2
and so on. Lemma 2 can be applied to these partitions of [0,1]: We get an
isometry between the measure algebras of (
;F ; P ) and ([0; 1];B;m) by mapping
partition elements as well as their unions to corresponding partition elements
and their unions. Since these union form dense subsets of the appropriate spaces
it is clear that the map extends to an isometry of the measure algebras which
preserves complements and countable unions. It also preserves measures and
the proof is complete.

An isomorphism theorem for measure spaces

Let � be a Borel probability measure on [0; 1] such that �fxg = 0 8x. Then
([0; 1];B; �) is isomorphic to ([0; 1];B;m) where m is the Lebesgue measure.

Proof: let F (x) = �(�1; x]); G(x) = infft 2 R : F (t) � xg and H(x) =
supft 2 R : F (t) = xg. Then G is measurable and mfx : G(x) � tg = F (t)
8t. [ This is standard; just verify that G(x) � t i¤ F (t) � x]. We claim that
G becomes a Borel isomorphism if we remove suitable null sets from [0; 1] and
R. First observe that H(x) < G(y) if 0 < x < y < 1. Indeed, F is continuous
by hypothesis and the supremum and the in�mum if the de�nitions of G and
H are attained. If G(y) = � and H(x) = � then F (�) = y (why?) and F (�) =
x < y = F (�) which implies � < � as stated. Claim: J � fx : G(x) < H(x)g is
at most countable. Note that G � H (because G(x) = infft 2 R : F (t) = xg)
and if x < y then the intervals (G(x);H(x)) and (G(y);H(y)) are disjoint
because H(x) < G(y). Since there can only be a countable number of disjoint
open intervals in R the claim follows. Let E =

[
x2J

(G(x);H(x)]. Note that

�((G(x);H(x)]) = F (H(x)) � F (G(x)) = x � x = 0. It follows that �(E) = 0.
Consider the map G from [0; 1]nf0; 1g to RnE. We claim that this is a Borel
isomorphism from ([0; 1];B;m) to (R;B; �). If x < y then G(x) � H(x) <
G(y) so G is strictly increasing, hence one-to-one. If G(a) 2 (G(x);H(x)] then
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G(x) < G(a), hence x < a. But then H(x) < G(a) a contradiction. Hence G
maps [0; 1]nf0; 1g into RnE. Let y 2 RnE. We shall show that G(F (y)) = y
proving that G is onto. G(F (y)) � y by de�nition of G. Suppose G(F (y)) < y.
Then y 2 (G(x);H(x)] where x = F (y). [ because H(F (y)) = supft : F (t) =
F (y)g � y]. But then y 2 E, a contradiction. We have proved that G is a
measurable bijection from [0; 1]nf0; 1g onto RnE. Measurability of its inverse
follows from monotonicity. All that remains is to show that m � G�1 = �. It
su¢ ces to note that F (x) = mft : G(t) � xg.

Corollary
If X is an uncountable Polish space and � is a Borel probability measure on

it such that �fxg = 0 8x then (X;B(X); �) is isomorphic to ([0; 1];B;m).

Proof: (X;B(X)) is Borel isomorphic to ([0; 1];B) and hence (X;B(X); �)
is isomorphic as a measure space to ([0; 1];B; �) for some measure �. Further
�fxg = 0 8x and hence ([0; 1];B; �) is isomorphic to ([0; 1];B;m).

END OF APPENDIX

APPENDIX ON CHARACTER THEORY

FOURIER ANALYSIS ON GROUPS

Throughout G denotes a locally compact abelian (LCA) group and m de-
notes a Haar measure on G which is assumed to be a probability measure when
G is compact.

Cc(G) stands for the space of continuous complex valued functions on G
with compact support and C0(G) stands for the space of continuous complex
valued functions on G which vanish at 1. f 2 C(G) vanishes at 1 for every
� > 0 there is a compact set K in G such that jf(x)j < � if x =2 K. Equivalently
f can be extended to the one-point compacti�cation of G by de�ning it to be 0
at the "point at in�nity".

We recall that Cc(G) is dense in Lp(= Lp(m)) for 1 � p <1:

Theorem
If 1 � p < 1 and fx(y) = f(yx�1) then x ! fx is a uniformly continuous

map from G into Lp.
[ For the de�nition of uniform continuity refer to the proof of the lemma

below].
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Proof: this follows by a standard argument using the following:

Lemma
Every function in C0(G) is unformly continuous.

Proof: let f 2 C0(G). We have to show that given � > 0 there is a neighbour-
hood U of e in G such that jf(x)� f(y)j < � whenever x; y 2 G and xy�1 2 U .
Let K be a compact set such that jf(x)j < � if x =2 K. For each x 2 K there
is a neighbourhood Ux of e such that jf(x)� f(y)j < � whenever y 2 xUx. Let
Vx be a symmetric neighbourhood of e such that VxVx � Ux. There is a �nite
set fx1; x2; :::; xNg of K such that K � x1Vx1 [ x2Vx2 [ ::: [ xNVxN . Let V
be the intersection of Vx1 ; Vx2 ; :::; VxN . Then V is a symmetric neighbourhood
of e. Let xy�1 2 V: Suppose x 2 K. Then x 2 xiVxi for some i. Hence
y 2 V x � V xiVxi � xiVxiVxi � xiUxi and hence jf(xi)� f(y)j < �. Since
x 2 xiVxi � xiUxi we also have jf(xi)� f(x)j < �. Thus jf(x)� f(y)j < 2�.
Since V is symmetric we get the same conlcusion if y 2 K. Now suppose x =2 K
and y =2 K. Then jf(x)� f(y)j < �+ �.

De�nition: if f and g are measurable and
Z ��f(xy�1)g(y)�� dy < 1 (where

dyis an abbreviation for dm(y)) we de�ne (f � g)(x) =
Z
f(xy�1)g(y)dy. Thus

(f � g)(x) =
Z
fy(x)g(y)dy. f � g is called the convolution of f and g.

Theorem

If
Z ��f(xy�1)g(y)�� dy <1 then (f � g)(x) = (g � f)(x)

If f; g 2 L1 then f � g 2 L1 too and kf � gk1 � kfk1 kgk1
If f; g; h 2 L1 then (f � g) � h = f � (g � h)
If p; q 2 (1;1); 1p +

1
q = 1; f 2 L

p and g 2 Lq then f � g is de�ned at every
point, it is continuous and vanishes at 1:
For f; g 2 Cc(G) we have f � g 2 Cc(G) and Sf�g � SfSg where Sf :Sg; Sf�g

are the supports of f; g and f � g respectively.
If f 2 L1 then Tf : L2 ! L2 de�ned by Tf (g) = f � g is well-de�ned and

kTfk � kf1k :

Proof: the proof is standard. We just mention that continuity of f � g uses
previous theorem.

Remark: L1 is a Banach algebra with convolution as multiplication. In gen-
eral it does not have a multiplicative unit. Also there is no involution operation
� such that kf�k = kfk and kf�fk = kfk2. Hence Gelfand -Naimark Theorem
cannot be applied directly to this algebra. The map f ! Tf de�ned above can
be used to get a Banch algebra with involution by taking the closure in operator
norm of fTf : f 2 L1g.
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Note that if G is discrete ( i.e. the toplogy of G is the discrete topology)
then 1

m(feg)Ifeg is a multiplicative unit. (Since m(fxg) is independent of x this
number cannot be 0). It can be shown that if L1 has a unit then G is necessarily
discrete.

De�nition: if f 2 L1 and 
 2 Ĝ (i.e. 
 : G! S1 is a continuous homomor-

phism) then the Fourier transform of f at 
 is the number f̂(
) =
Z
f(x)

�

(x)dx.

Theorem [ Characterization of algebra homomorphisms of L1]

A function � : L1 ! C is a non-zero algebra homomorphism ( i.e. it is linear
and �(f � g) = �(f)(g) for all f; g 2 L1)

if and only if there exists 
 2 Ĝ such that �(f) = f̂(
) for all f 2 L1:

Proof: if � has this form it is obviously linear and the fact that �(f � g) =
�(f)(g) for all f; g 2 L1 is proved easily using Fubini�s Theorem. Note that if

�(f) = 0 for all f 2 L1 then
Z
f(x)

�

(x)dx = 0 for all f; g 2 L1 which implies


(x) = 0 a.e. However 
(x) 6= 0 for any x. Thus � is non-zero. Conversely let �
be any non-zero algebra homomorphism of L1. We claim that the linear map �
is bounded on L1. For homomorphisms on a Banach algebra with unit this is a
standard argument (ref. Rudin�s Functional Analysis): For the general case we
can adjoin a unit to L1 and � becomes the restriction to L1 of a homomorphism
on the new Banach algebra. The conclusion is k�k � 1. There exists, therefore, a
function 
 in L1 such that �(f) =

Z
f
 for all f 2 L1. The equation �(f �g) =

�(f)(g) gives
Z Z

f(xy�1)g(y)dy
(x)dx =

Z Z
f(x)
(x)g(y)
(y)dydx or all

f; g 2 L1. This implies
Z
f(xy�1)
(x)dx =

Z
f(x)
(x)
(y)dx a.e. for all

f 2 L1. In particular
Z
fy(x)
(x)dx = (

Z
f(x)
(x)dx)
(y) for some x. The

fact that y ! fy is continuous (and k�k � 1 so j
(x)j � 1 a.e.) shows 
 is

continuous on G. Now
Z
f(z)
(zy)dz =

Z
f(xy�1)
(x)dx =

Z
f(x)
(x)
(y)dx

for all f 2 L1 which implies (by Fubini�s Theorem) that 
(zy) = 
(z)
(y) a.e.
on G � G. By continuity of 
 this implies 
(zy) = 
(z)
(y) for all z; y 2 G.
Hence 
(e) = 0 or 1. If 
(e) = 0 then 
 (and hence �) is zero contradicting
the hypothesis. Hence 
(e) = 1 and 
(x�1) = 1


(x) . Since j
(x)j � 1 we get

j
(x)j = 1 for all x. Finally we note that 
0 =
�

 has similar properties and

�(f) = f̂(
0) for all f .

On Ĝ we consider the topology of uniform convergence on compact sets. A
base for this topology consists of sets of the type f
 : 
(K) � Ug where K is
compact in G and U is open in C.
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Theorem
The topology de�ned above is the smallest one that makes the functions


 ! f̂(
) (f varying over L1) continuous.

Proof: if a net f
ig converges to 
 uniformly on compact sets then f̂(
i)!
f̂(
) whenver f 2 Cc(G) because

���f̂(
i)� f̂(
)��� � Z
jf(x)j j
i(x)� 
(x)j dx

and j
i(x)� 
(x)j ! 0 uniformly on the support of f . If f 2 L1 is arbitrary

and � > 0 there exists g 2 Cc(G) such that
Z
jf � gj < �. Now

���f̂(
i)� f̂(
)��� ����f̂(
i)� ĝ(
i)��� + jĝ(
i)� ĝ(
)j + ���ĝ(
)� f̂(
)��� < � + jĝ(
i)� ĝ(
)j + � and

jĝ(
i)� ĝ(
)j ! 0. We have proved that 
 ! f̂(
) continuous for all f 2 L1:

Let � be the smallest one that makes the functions 
 ! f̂(
) (f varying
over L1) continuous. We have to show that f
 : 
(K) � Ug 2 � for any
compact set K in G and any open set U in C. Let 
0 2 f
 : 
(K) �
Ug. We claim that (
; x) ! 
(x) is continuous on (Ĝ; �) � G: �x f 2 L1

and let 
0 2 Ĝ; x0 2 G and � > 0. There exists a neighbourhood U of
x0 and a � -neighbourhood V of 
0 such that kfx � fx0k1 < � for x 2 U
and

��(fx0)^(
)� (fx0)^(
0)�� < � for 
 2 V . Now
��(fx)^(
)� (fx0)^(
0)�� ���(fx)^(
)� (fx0)^(
)��+��(fx0)^(
)� (fx0)^(
0)�� � kfx � fx0k1+��(fx0)^(
)� (fx0)^(
0)�� <

2� for x 2 U and 
 2 V . Now recall that (fx)^(
) = 
(
�
x)f̂(
). Hence����
(�x)f̂(
)� 
0( �x0)f̂(
0)���� < 2� if x 2 U and 
 2 V . Choose f such that

f̂(
0) = 1 and then shrink V so that
���f̂(
)� f̂(
0)��� < � for 
 2 V . Then

j
(x)� 
0(x0)j �
����
(�x)f̂(
)� 
(�x)����+ ����
(�x)f̂(
)� 
0( �x0)f̂(
0)���� � ���f̂(
)� 1���+

2� < 3�. This proves the claim.

If x 2 K then 
0(x) 2 U and hence there exists a neighbourhood Wx of
x and a ��neighbourhood Vx of 
0 such that 
(y) 2 U whenever 
 2 Vx and
y 2 Wx. Let K � Wx1 [Wx2 [ ::: [Wxk . Let V = Vx1 \ Vx2 \ ::: \ Vxk . Then
V � f
 : 
(K) � Ug. [ 
 2 V; x 2 K imply there exists i such that x 2 Wxi ;
since 
 2 Vxi we have 
(x) 2 U ]. We have proved that f
 : 
(K) � Ug is open
in � . The proof is now complete.

Theorem
For each f 2 L1 the function f^ 2 C0(Ĝ). A � ff̂ : f 2 L1g is dense in

C0(G
^) ( for the sup norm). g 2 A and x 2 G implies 
 ! g(
)
(x) is in A

and 
 ! g(

1) is in A. If f 2 L1 and 
 2 G^ then (f � 
)(x) =
�

(x)f̂(
).

Proof: the fact that f̂ 2 C0(Ĝ) is proved using Banach algebra theory. [ In
my notes on GelfandN.tex the following fact is proved: let� be the set of all non-
zero complex homomorphisms on L1 with the topology from (L1)�, i.e. �i ! �
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i¤ �i(f) ! �(f) for all f 2 L1. Then for each f 2 L1 the map � 2 � ! �(f)
belongs to C0(�). This is proved by identifying (via Banach Alaoglu Theorem)
the set � [ f0g with the weak*-topology as the one-point compacti�cation of
� and noting that � ! �(f) is continuous on � [ f0g. De�ne � : � ! Ĝ

by f̂(�(�)) = �(f). � is a bijection. Also � is continuous when Ĝ is given
the topology of uniform convergence on compact sets and � is given the weak�

topology: if �i(f) ! �(f) for all f 2 L1 and �(f) � f̂(
); �i(f) � f̂(
i) then

i ! 
 uniformly on compact sets. This follows from the previous theorem. If
f 2 L1 and � > 0 there exists a compact set K in � such that j�(f)j < � if

� =2 K. The set C = �(K) is compact in Ĝ and 
 =2 C implies
���f̂(
)��� = j�(f)j < �

where � is such that �(�) = 
 ( so that f̂(
) = f̂(�(�)) = �(f)). We have proved
that the Fourier transform of any L1 function vanishes at 1]. To show that
A is dense we note that A is a sub-algebra of C0(Ĝ). If 
1 6= 
2 then there
exists f 2 L1 such that f̂(
1) 6= f̂(
2). Also if f 2 L1 and g(x) = �f(x�1) then

ĝ(
) = [

Z
f(x�1)
(x)dx]� = [

Z
f(y)
(y�1)dy]� = [

Z
f(y)�
(y)dy]� = [f̂(
)]�.

It now follows by Stone-Weierstrass Theorem that A is dense on C0(G). Next
f̂(
)
(x) = [�
(x)f ]^ 2 A. Also f̂(

1) = [f(�
1)]

^. It remains to show that

(f � 
)(x) = 
(x)f̂(
). The left side is
Z
f(xy�1)
(y)dy =

Z
f(z)
(z�1x)dz =Z

f(z)
(z�1)
(x)dz

=

Z
f(z)�
(z)dz
(x) = 
(x)f̂(
).

Theorem
Ĝ is an LCA group ( under pointwise multiplication) and sets of the type

f
 : j1� 
(x)j < � for all x 2 Kg where K is a compact subset of G and � > 0
form a neighbourhood base at 1.

Proof: only thing that requires a proof is local compactness. Let U be a
neighborhood of e whose closure is compact. Consider V = f
 : j1� 
(x)j < �

for all x 2
�
Ug. We prove that this neighbourhood of 1 is relatively compact.

Lemma
Let � > 0. There exists a positive integer N such that c 2 S1 and c; c2; ::; cN

have real parts strictly positive imply jc� 1j < �.

Suppose this is false for some � > 0. Then there exists a sequence fcng in
S1 such that cn; c2n; ::; c

n
n have real parts strictly positive but jcn � 1j � �. If

c is a limit point of this sequence then Re ck � 0 for every positive integer k
and jc� 1j � �. If c is not a root of unity then fc; c2; :::g is dense in S1 and
hence Re ckj ! Re(�1) = �1 for some kj " 1 which is a contradiction. Hence
there is a least N � 2 such that cN = 1. The numbers c; c2; :::; cN are distinct
and they are all N � th roots of 1. Hence every N � th root of 1 has positive
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real part. This is a contradiction because Re e2�i
N==2
N < 0 if N is even and Re

e2�i
(N�1)==2

N < 0 if N is odd. [ Note that � � �=N 2 (�=2; �)].

Back to the proof of the theorem: we assume that � is so small that c 2
S1; jc� 1j < � ) Re c > 0. Let � > 0 and choose a positive integer N as in
the lemma. Let W be a neighbourhood of e such that WN � U . If 
 2 V
and x; y 2 W then xj ; yj 2 U for 1 � j � N . Hence

��1� 
j(x)�� < � and��1� 
j(y)�� < � for 1 � j � N . This implies j1� 
(x)j < � and j1� 
(y)j < �
so j
(x)� 
(y)j < 2�. Let f
ig be a net in V . If D = fc 2 C : jc� 1j � �g

then V � D
�
U so by Tychono¤�s Theorem there is a subnet f
ijg converging

pointwise (say to �) on
�
U .

Claim: f
ijg converges uniformly on any compact set K in G. If this is false

we may suppose (by going to a subnet)
���
ij (xj)� �(xj)��� � 6� > 0 for some

net fxjg in K and some � > 0. Let W be as above for this �. By going to

a further subnet we may suppose xj ! x (say): Now
���
ij (xj)� 
ij (x)��� < 2�

for j � some j0 ( because xx
�1
j 2 W ). Observe that since j
(x)� 
(y)j < 2�

whenever xy�1 2 W and 
 2 V it follows that j�(x)� �(y)j < 2� whenever

xy�1 2W . Hence j�(xj)� �(x)j < 2� for j � some j1. Now
���
ij (xj)� �(xj)��� ����
ij (xj)� 
ij (x)��� + ���
ij (x)� �(x)��� + j�(xj)� �(x)j < 5� for j � some j3 con-

tradicting the fact that
���
ij (xj)� �(xj)��� � 6�. We have proved that every net

in V has a subnet thatg converges uniformly on compact sets. [ It may be noted
that � is a continuous homorphism into S1, i.e. � 2 Ĝ].

Theorem
In G sets of the form fx : j1� 
(x)j < r 8
 2 Cg where C is compact in Ĝ

and r > 0 are neighbourhoods of e. In Ĝ sets of the form f
 : j1� 
(x)j < r
8
 2 Kg where K is compact in G and r > 0 form a neighbourhood base at e.

Proof: the second part is obvious. Let x0 2 V � fx : j1� 
(x)j < r
8
 2 Cg. The map 
 ! 
(x0) is continuous on Ĝ and C is compact in Ĝ and
so supfj1� 
(x0)j : 
 2 Cg is attained. Hence supfj1� 
(x0)j : 
 2 Cg < r. Let
0 < � < r� supfj1� 
(x0)j : 
 2 Cg. For each 
0 2 C we have j1� 
0(x0)j < r:
By the continuity of the map (x; 
) ! 
(x) on Ĝ � G established above we
see that there exists neighbourhoods V;W
0 of x0 and 
0 respectively such that
x 2 V; 
 2 W
0 ) j
(x)� 
0(x0)j < �. The neighbourhods W
0 ; 
0 2 C
form an open cover of C. Hence there exists a �nite set f
1; 
2; :::; 
kg such
that C is covered by W
i ; 1 � i � k. Now 
 2 C implies 
 2 W
i for some
i and hence j
(x)� 
i(x0)j < �. This gives j
(x)� 1j � � + j1� 
i(x0)j �
� + supfj1� 
(x0)j : 
 2 Cg < r. Hence V � fx : j1� 
(x)j < r 8
 2 Cg and
the proof is complete.

Theorem [Bochner]
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Let � : G ! C be continuous at e and positive de�nite. Then there exist

a positive regular Borel measure � on Ĝ such that �(x) =
Z
G^


(x)d�(
) for all

x 2 G.
Proof: standard arguments give the following: �(x�1) = ��(x); j�(x)j � �(e)

and j�(x)� �(y)j2 � 2�(e)Re[�(e)� �(xy�1)]. Thus � is bounded, uniformly
continuous and �(e) > 0 (unless � � 0 in which case we can take � = 0).
Without loss of generality we may suppose �(e) = 1: Let f 2 Cc(G) and letK be
its support and � > 0. Then f(x) �f(y)�(xy�1) is uniformly continuous onK�K.
It is easy to see that there exists a partition fA1; A2; :::; Akg of K such that
kX

i;j=1

f(xi) �f(xj)�(xi � xj)m(Ei)m(Ej) di¤ers from
Z Z

f(x) �f(y)�(xy�1)dxdy

by at most �. It follows that the double integral here is non-negative for any

f 2 Cc(G); hence for any f 2 L1(G). Let T�(f) =
Z
G

f� (f 2 L1(G)). Recall

that for each f 2 L1 the function f̂ 2 C0(Ĝ) and A � ff̂ : f 2 L1g is dense
in C0(Ĝ). De�ne S� : A ! C by S�(f^) = T�(f). We are going to show that
jT�(f)j �



f^

1 which shows that f̂ = ĝ implies T�(f) = T�(g). Thus S� is

well-de�ned. Also
���S�(f̂)��� = jT�(f)j � 


f̂




1
so S� extends to a bounded linear

functional on C0(Ĝ) ( with the sup norm). Hence there exists a regular Borel

measure � on Ĝ such that S�(f̂) =
Z
G^

f̂(
)d�(
) for all f 2 L1. This means

Z
G^

f̂(
)d�(
) =

Z
G

f� for all f 2 L1. Hence
Z
G^

Z
f(x)�
(x)dxd�(
) =

Z
G

f� and

since f 2 L1 is arbitrary this gives
Z
G^

�
(x)d�(
) = �(x) almost everywhere.

Clearly both sides are continuous and hence the equality holds at every point x.
To complete the proof replace � by � � ��1 where � : Ĝ! Ĝ is the map 
 ! 1


 .

It remains to prove that jT�(f)j �



f̂




1
for all f 2 L1. De�ne < f; g >0=Z Z

f(x)�g(y)�(xy�1)dxdy. It is easy to verify that < f; g >0= T�(f � g~)

where g~(x) = �f(x�1). Note that < f; g >0 is linear in f conjugate lin-
ear in g and < f; f >0� 0. Cauchy - Schwartz inequality holds under these
conditions and so j< f; g >0j �

p
< f; f >0

p
< g; g >0. Let U be an open set

such that e 2 U; �U is compact and U�1 = U . Let g = 1
m(U)IU . We have <

f; g >0= 1
m(U)

Z
U

Z
f(x)�(xy�1)dxdy = 1

m(U)

Z
U

Z
f(x)f�(xy�1)� �(x)gdxdy+Z

f(x)�(x)dx. Hence j< f; f >0 �T�(f)j < � if U is suitable chosen. Also
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< g; g >0= 1
m2(U)

Z
U

Z
U

�(xy�1)dxdy = 1 + 1
m2(U)

Z
U

Z
U

f�(xy�1) � 1gdxdy so

j< g; g >0 �1j < � if U is appropriately chosen. Applying j< f; g >0j �
p
< f; f >0

p
< g; g >0

and letting � ! 0 yields jT�(f)j �
p
< f; f >0 =

p
T�(f � f~). Now T� is a

bounded linear functional on L1 corresponding to the element � of L1 and
k�k1 � 1 so kT�k � 1. If g = f � f~; g2 = g � g~; gn+1 = gn � g~n(n � 2) then
jT�(f)j2 � T�(g) �

p
T�(g2)

� :::: � fT�(gn)g1=2
n�1
. Hence jT�(f)j2 � kgnk1=2

n�1

1 . A simple exercise is
to show that (f � f~)~ = f � f~. This shows that gn is simply the "2n�1 -th
power" of g w.r.t. convolution operation. By the spectral radius formula we get
jT�(f)j2 � �(g) where �(g) is the spectral radius of g. By Banach algebra theory

we have �(g) �



f̂




1
. [ We use two theorems from Rudin�s Functional Analysis:

let X = L1(G) � C with the multiplication operation (f; c)(g; d) = (fg + cg +
df; cd) and the norm k(f; c)k = kfk1 + jcj. Then X is a commutative Banach
algebra with unit (0; 1): Fix f 2 L1 and consider the element (f; 0) of X: By
Theorem 10.13, page 235 of Rudin we have k(f; 0)nk1=n ! �((f; 0)) (the spectral
radius of (f; 0). This gives lim kfnk1=n1 = �(f; 0). Now if c 2 �((f; 0))nf0g then,
by Theorem 11.5 page 265 of Rudin, there exists a complex homomorphism
� of X such that c = �((f; 0)). De�ne � : L1 ! C by �(g) = �((g; 0))
for any g 2 L1. Then � is a non-zero complex homomorphism on L1 and
c = �((f; 0)) = �(f). But any non-zero complex homomorphism � of L1 is of
the type �(g) = g^(
) for some 
 2 Ĝ and, conversely, any 
 yields a complex
homomorphism of L1: Hence, if �((f; 0))nf0g is non-empty then �((f; 0)) =
supfjcj : c 2 �((f; 0)) � supfj�(f)j : � is a complex homomorphism of L1g =
supf

��f^(
)�� : 
 2 Ĝg =


f^

1. This inequality also holds if �((f; 0))nf0g is

empty.]. Identifying elements � of �L1(G) with the functions f ! f̂(
) with


 2 Ĝ we get �(f) = supf
���f̂(
)��� : 
 2 Ĝg = 

f^

1. Finally we get jT�(f)j2 �

kĝk1 and since (f~)^ = [f̂ ]� we get jT�(f)j2 � kĝk1 �



f̂




1



(f~)^

1 =


f̂


2
1
. It remains to show that � is a positive measure. We have 1 = �(e) =Z

G^


(e)d�(
) = �(Ĝ) and j�j (Ĝ) = kT�k � 1. We can write �(E) =
Z
E

fd j�j

with jf j = 1 a.e. [j�j]. We have 1 = �(Ĝ) =

Z
G^

fd j�j which implies 1 =

Z
G^

Re fd j�j. Hence 1 =
Z
G^

Re fd j�j �
Z
jf j d j�j = j�j (Ĝ) = 1 which gives

Re f = 1 a.e. and hence Im f = 0 a.e.. Thus f = 1 a.e. and � = j�j.

Theorem
The measure � in Bochner�s Theorem is unique.
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Proof: we claim that
Z
G^


(x)d�(
) = 0 for all x ( where � is a complex mea-

sure) implies � = 0. If f 2 L1 then
Z
G^

f̂(x)d�(
) =

Z
G^

Z
G

f(x)�
(x)dxd�(
)

Z
G

Z
G^

�
(x)d�(
)f(x)dx =

0 ( because �
(x) = 
(x�1)). But ff̂ : f 2 L1g is dense in C0(Ĝ) so � = 0.

Theorem [Fourier Inversion Theorem]

Let M = ff 2 CG : f(x) =

Z
G^


(x)d�(
) 8x 2 G for some regular Borel

measure � on Ĝg. Then
1) f̂ 2 L1 for all f 2 L1 \M

2) if f 2 L1 \M then we can write f(x) =
Z
G^

f̂(
)
(x)d
 for all x provided

Haar measure on Ĝis suitably normalized.

Proof : for f 2 L1\M we write �f for a measure which satis�es the equation

f(x) =

Z
G^


(x)d�f (
) 8x 2 G. Note that (g � f)(e) =
Z
g(x�1)f(x)dx =

Z
g(x�1)

Z
G^


(x)d�f (
)dx =

Z
G^

Z
g(x�1)
(x)dxd�f (
) =

Z
G^

Z
g(z)�
(z)dzd�f (
)

=

Z
G^

ĝ(
)d�f (
) 8g 2 L1 and, changing g to g � h (where h 2 L1 \ M)

Z
G^

ĥ(
)ĝ(
)d�f (
) = ((h�g)�f)(e) = ((g �f)�h)(e) =
Z
G^

f̂(
)ĝ(
)d�h(
). From

this we conclude that ĥ(
)d�f (
) = f̂(
)d�h(
). [ fĝ : g 2 L1g is dense in C0(Ĝ)
as proved earlier]. This equation holds for all f; h 2 L1\M . Now let h 2 Cc(Ĝ)
and K be its support. For each 
 2 K there exists f 2 Cc(G) with f̂(
) 6= 0.
Now (f � f~)^(
) =

���f̂(
)���2 > 0. Also (f � f~)^(
1) =
���f̂(
1)���2 � 0 for all 
1.

Since 
1 ! f^(
1) is continuous ( because convergence in Ĝ implies uniform
convergence on the support of f) each 
 2 K has a neighbourhood on which
(f � f~)^ is positive. These neighbourhoods form an open cover. Extracting a
�nite subcover we get f1; f2; :::; fk 2 Cc(G) and 
1; 
2; :::; 
k 2 K such that the

Fourier transform of  =
kX
i=1

fi � f~i is positive on K. Note that  2 Cc(G).

We claim that  2 M . For this we apply Bochner�s Theorem. First note that

f � f~ is positive de�nite for any f 2 L1. [ In fact
kX
i=1

ci
�
cj(f � f~)(xix�1j ) =
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Z �����
kX
i=1

cif(xiy)

�����
2

dy]. Hence  is continuous and positive de�nite. Bochner�s

Theorem implies that  2M . Let Th =
Z
G^

h
 ̂
d� where � is de�ned by  (x) =Z

G^


(x)d� (
). We claim that T is well de�ned on Cc(G) :  1 2 Cc(G);  ̂1 > 0

on K1 and  1(x) =
Z
G^


(x)d� 1(
):We have to show that
Z
G^

h
 ̂
d� =

Z
G^

h
 ̂1
d� 1 .

Since  ; 1 2 M we have  ̂(
)d� 1(
) =  ̂1(
)d� (
): Multiplying both sides

by h
 ̂ ̂1

and integrating we get
Z
G^

h
 ̂
d� =

Z
G^

h
 ̂1
d� 1 . Thus T is a well-de�ned

linear map on Cc(G). Note that � is a positive measure. Hence T is a positive
linear functional on Cc(G). Claim: T is not identically 0. If f 2 L1 \M then

T (hf^) =

Z
hf̂

 ̂
d� =

Z
h ̂

 ̂
d�f =

Z
hd�f . To prove the claim it su¢ ces to

show that
Z
hd�f 6= 0 for some h 2 Cc(G) and some f 2 L1\M . If this is false

then �f = 0 for every f 2 L1 \M . The equation (g � f)(e) =
Z
G^

ĝ(
)d�f (
)

8g 2 L1;8f 2 L1\M shows that (g�f)(e) = 0, i.e.
Z
g(y)f(y�1)dy = 0 8g 2 L1

so L1\M = f0g in which case there is nothing to prove. Hence T is not the zero
functional. Now �x h 2 Cc(Ĝ) and 
 2 Ĝ. Let  2 Cc(G) be constructed as
above with  2 K replaced by K[(K
) ( so  ̂ > 0 on K as well as on K
). Let

f(x) =  (x)

(x) . Then f̂(
1) =

Z
 

(x) �
1(x)dx =  ̂(

1) and � (A) = �f (

1

E). [

De�ne � : Ĝ! Ĝ by �(
1) = 

1. Then
Z

1(x)d� (
1) =  (x) = 
(x)f(x) =


(x)

Z

1(x)d�f (x) =

Z
�(
1)(x)d�f (x) =

Z

1(x)d�f � ��1(x). Uniqueness

of the measure in Bochner�s theorem gives � = �f � ��1]. Let h0(
1) =

h(
1
 ). Then Th0 =
Z
G^

h0
 ̂
d� =

Z
G^

h(
1
 )
1

 ̂(
1)
d� (
) =

Z
G^

h(
1)
1

 ̂(

1)
d�f (
) =Z

G^

h(
1)

f^n(
1)
d�f (
) = Th. In other words Th = Th
 where h
 is the translate of

h by 
. T is, therefore, a translation invariant positive linear functionsal on

Cc(G) and hence Th =
Z
hd� for an appropriate choice of Haar measure � on
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Ĝ. If f 2 L1 \M and h 2 Cc(Ĝ) then
Z
G^

hd�f = T (hf̂) =

Z
G^

hf̂d�(
). This

yields d�f = f̂d� which in turn proves that f̂ 2 L1(Ĝ).

Finally we have f(x) =
Z

(x)d�f (
) =

Z

(x)f̂(
)d�(
) if f 2 L1 \M .

This completes the proof.

Corollary
Sets of the type fx 2 G : j1� 
(x)j < � 8
 2 Kg where � > 0 and K is

compact in Ĝ form a local base at e. Also Ĝ separates points of G:

Proof: we already know that the sets here are open. Let x 6= e. There exists
an open set U such that x =2 U; e 2 U: There exists a compact neighborhood W
of e such that W�1 = W and WW � U . Let f = 1p

m(W )
IW and g = f � f~.

Then g is continuous with support in WW . Also g is positive de�nite. By

Bochner�s Theorem it follows that g 2 L1 \M . Hence g(x) =
Z
G^

ĝ(
)
(x)d


for all x. In particular g(e) =
Z
G^

ĝ(
)d
. However g(e) =
Z
f(y�1) �f(y)dy =

1
m(W )m(W ) = 1. Thus

Z
G^

ĝ(
)d
 = 1 and ĝ =
���f̂ ���2 � 0. There is a compact

set K in Ĝ such that
Z
K

ĝ(
)d
 > 2=3. If y 2 G and j1� 
(y)j < 1=3 8
 2 K

we claim that y 2 U . This would certainly show that every neighbourhhod
of e contains fx 2 G : j1� 
(x)j < � 8
 2 Kg for some � > 0 and some
compact set K in Ĝ proving the �rst part. It also shows that 
(x) 6= 1 for
some 
 2 K. [ Otherwise j1� 
(x)j < 1=3 8
 2 K so x 2 U which is a
contradiction. Thus x 6= e implies 
(x) 6= 1 for some 
 2 Ĝ. If x 6= y then
there exists 
 2 Ĝ such that 
(xy�1) 6= 1 which implies 
(x) 6= 
(y). It
remains to show that if y 2 G and j1� 
(y)j < 1=3 8
 2 K then y 2 U . We

have g(y) =
Z
G^

ĝ(
)
(y)d
 =

Z
G^nK

ĝ(
)
(y)d
 +

Z
K

ĝ(
)
(y)d
 = c + d (say).

Note that jcj < 1=3 because
Z
Kc

ĝ(
)d
 = 1 �
Z
K

ĝ(
)d
 < 1=3. Also Re d =

Re

Z
K

ĝ(
)
(y)d
 =

Z
K

ĝ(
)Re 
(y)d
 and Re 
(y) > 2=3 so Re d > (2=3)2. It

follows that Re(c + d) = Re d + Re c > (2=3)2 � 1=3 = 1=9 so Re g(y) > 1=9.
In particular g(y) 6= 0. Since g has support in WW � U we have proved that
y 2 U:
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Remarks: let G be an LCA group and H a closed subgroup of G. Give G=H
the quotient topology ( namely the smallest topology that makes the quotient
map �(x) = xH continuous). Then G=H is also an LCA group. If x 2 GnH
then xH is a non-zero element of G=H. Hence there exists a character � of G=H
such that �(xH) 6= 1. De�ning 
 2 G^ by 
 = � � � we get 
(y) = 1 for all
y 2 H but 
(x) 6= 1. We prove later that any character on a closed subgroup of
G can be extended to a character on G.

Corollary
If G is a compact abelian group then the set of all trigonometric polynomials

( i.e. functions of the type
nX
i=1

ci
i where n 2 N; c0is 2 C and 
0is 2 Ĝ) is dense

in C(G) with respect to the supremum norm.

Proof: this follows immediately from previous corollary and Stone - Weier-
strass Theorem.

Remark: for any p 2 [1;1) C(G) is dense in Lp so trigonometric polynomials
are dense in Lp.

In the following theorem we write Lp for Lp(G):

Theorem [ Plancherel]
The map f ! f̂ maps L1 \ L2 into L2(Ĝ) and it is an isometry. It extends

to an isometric isomorphism of L2 onto L2(Ĝ).

Proof: let f 2 L1 \ L2 and g = f � f~. Then g is positive de�nite. It
is continuous and integrable. [ Convolution of any two L2 functions is con-
tinuous]. By Bochner�s Theorem g 2 L1 \ M . Hence the inversion formula
g(x) =

Z
ĝ(
)
(x)d
 holds for all x. Hence g(x) =

Z ���f̂(
)���2 
(x)d
. Put
x = e to get

Z
jf j2 = (f � f~)(e) = g(e) =

Z ���f̂(
)���2 d
. Hence f ! f̂ maps

L1 \ L2 into L2(Ĝ) and it is an isometry. Since Cc(G) is dense in L2 it follows
that L1 \L2 is dense in L2. Hence f ! f̂ extends to an isometric isomorphism
of L2 onto its range. Let S = ff̂ : f 2 L1 \L2g. To complete the proof we have
to show that S is dense in L2(Ĝ). Suppose h 2 L2(Ĝ) is orthogonal to S. Note
that f 2 L1\L2 ) �
(x)f̂(
) 2 S for each x 2 G. [ This is because fx 2 L1\L2

and (fx)^(
) = �
(x)f̂(
)]. Hence f 2 L1\L2 implies
Z
h(
)�
(x)f̂(
)d
 = 0 for

all x. Since h 2 L2(Ĝ) and f̂ 2 L2(Ĝ) we have hf̂ 2 kL1(Ĝ). However if � is a
complex Borel measure on Ĝ such that

Z

(x)d�(
) = 0 for all x then � = 0.

Hence hf̂ = 0 a.e. If 
 2 Ĝ then there exists f 2 L1 \ L2 such that f̂(
1) 6= 0
for all 
1 in a neighbourhood of 
. [ There exists � 2 Cc(Ĝ) such that � = 1 in
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a neighbourhood U of 
. Since ff^ : f 2 L1g is dense in C0(Ĝ) there exists a
sequence ffng � L1 such that f̂n ! � uniformly. There exists fgng � L1 \ L2

such that kfn � gnk1 < 1=n. Now
���f̂n � ĝn��� (
) � kfn � gnk1 < 1=n. It follows

that ĝn ! � uniformly. Hence jĝnj > 1=2 in U if n is su¢ ciently large. In par-
ticular ĝn 6= 0 on U . We can take f = gn]. Hence h = 0 a.e. in a neighbourhood
of each point 
. This implies h = 0 a.e.: if K � Ĝ is compact then h = 0 a.e. on
K as seen by a straightforward compactness argument. If E = f
 : h(
) 6= 0g
then m(E \K) = 0 for each compact set K. Regularity of Haar measure now
shows that m(E) = 0. This completes the proof.

Theorem
ff̂ : f 2 L1g = f� �  : �;  2 L2(Ĝ)g (�)

Proof: If f 2 L1 we can write f = gh where g; h 2 L2. [ Take g =p
jf j; h(x) = f(x)=g(x) if g(x) 6= 0; 0 if g(x) = 0]. By above theorem ĝ and

ĥ 2 L2. Claim: f̂ = ĝ � ĥ . If we prove this it would follow that the left
side of (�) is contained in the right side. To prove the claim note that an isom-

etry preserves inner products. So we have the Parseval Formula
Z
g(x)�h(x)dx =Z

ĝ(
1)[ĥ(
1)]
�d
1: Replace h(x) by 
(x)�h(x) to get

Z
g(x)h(x)�
(x)dx =

Z
ĝ(
1)ĥ(



�1
1 )d
1

(because the Fourier transform of 
(x)�h(x) at 
1 is [ĥ(


�1
1 )]�). Since (ĝ �

ĥ)(
) =

Z
ĝ(

�11 )ĥ(
1)d
1 =

Z
ĝ(
2)ĥ(



�1
2 )d
2 we get

Z
g(x)h(x)�
(x)dx =

(ĝ � ĥ)(
). The claim is proved.
It remains to show that the right side of (�) is contained in the left side.

If �;  2 L2(Ĝ) we can write � = ĝ and  = ĥ for some g; h 2 L2. Hence
� �  = ĝ � ĥ = f^ where f is the L1 function gh. This completes the proof.

Corollary
Let U be a non-empty open set in Ĝ. There exists f 2 L1 such that f̂ = 0

on U c but f̂ is not identically 0.

Proof: there exists a compact set K � U such that m(K) > 0. There

exists an open set V containing e such that
�
V is compact and K + V � U . By

Plancherel Theorem there exist g; h 2 L2 such that ĝ = IK and ĥ = IV . Since
g; h 2 L2 we have (by the proof of above theorem) ĝ � ĥ = f̂ where f = gh.
Clearly, f 2 L1; f̂ = 0 on (K + V )c ( because ĝ = 0 on Kc and ĥ = 0 on

V c) hence on U c but
Z
f^(
)d
 =

Z
(ĝ � ĥ)(
)d
 =

Z
ĝ(
)d


Z
ĥ(
)d
 =

m(K)m(V ) > 0 so f̂ is not identically 0.

Theorem [ Pontryagin Duality Theorem]
Let G be an LCA group and de�ne � : G! G^^ by �(x)(
) = 
(x). Then �

is a group isomorphism as well as a homeomorphism (onto G^^).
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Proof: it is trivial to check that � is a group isomorphism onto the range, say
H, which is a subgroup ofG^^. We �rst prove that this map is a homeomorphism
onto its range. To complete the proof we then show that H is both dense and
closed in G^^. Let K � Ĝ be compact, r > 0 and

U = fx 2 G : j1� 
(x)j < r 8
 2 Kg; V = f� 2 G^^ : j1� �(
)j < r 8
 2
Kg. We have proved that these are typical sets from neighbourhood bases at the
identity in G and G^^ respectively. Note that ��1(V \ �(G)) = U . This proves
that � and ��1 are continuous at the identity elements of G and G^^ respectively.
Hence � is a homeomorphism onto its range. As a consequence of this the range
of � is locally compact. The next lemma shows that a locally compact sugbroup
of a locally compact abelian group is necessarily closed. Hence H is closed. All
that remains is to show that H is dense in G^^. We apply previous corollary
with G changed to G^ taking U to be G^^n�(G). Assuming that U is non-empty
we shall arrive at a contradiction. There exists h 2 L1(Ĝ) such that ĥ is not

identically 0 but ĥ is 0 on U c = �(G). We have ĥ(�(x)) =
Z
h(
)[�(x)(
)]�d
 =Z

h(
)�
(x)d
 = 0 for all x. Changing x to x�1 gives
Z
h(
)
(x)d
 = 0 for all

x. Since the only complex Borel mesure � with
Z

(x)d�(
) = 0 for all x is the

zero measure we get h = 0. Hence ĥ = 0, a contradiction.

Lemma
Let G be a Hausdor¤ topological group. Let H be a subgroup of G which is

also locally compact in the relative topology from G. Then H is closed in G.

Proof: let U be a neighbourhood of e in H whose closure (in H) is compact.
Let U = H \ V with V open in G and A = V [ (ClH(U)nUg where ClH(U) is
the closure of U in H. Then A \H = ClH(U) which is compact, hence closed
in G. Let W be an open set in G such W = W�1 and WW � V and e 2 W .
[ Possible because V is a neighbourhood of e in G]. If x 2

�
H then x�1 2

�
H

too because
�
H is a subgroup. Hence x�1W \ H 6= ;. Let y 2 x�1W \ H. If

yx =2 A\H then there exists a neighbourhood U1 of yx which does not intersect
A\H. the neighbourhood y�1U1 \xW of x must contain a point z of H. Thus
z 2 y�1U1 \ xW \ H and so yz 2 yxW � WW ( because y 2 x�1W ) and
yz 2 A. Also y and z 2 H. Thus yz 2 A\H \U1 a contradiction since U1 does
not intersect A \ H. Thus yx 2 A \ H. Since y 2 H this gives x 2 H. This
completes the proof.

Corollary

If � is a regular Borel measure on G such that
Z

(x)d�(x) = 0 for all 
 2 Ĝ

then � = 0.

Proof: this follows immediately from an earlier result if we think of � as a
measure on G^^.
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Corollary [ Inversion]

If f 2 L1 and f̂ 2 L1(Ĝ) then f^^(�(x)) = f(x) a.e.

Proof: we prove that if � is a regular Borel measure on G and �̂ 2 L1(Ĝ)

(where �̂(
) =
Z
�
(x)d�(x)) then d�

dm =

Z
�̂(
)
(x)d
. The corollary follows

from this by de�ning �(A) as
Z
A

fdm. Note that �̂ 2 L1(Ĝ) \M(Ĝ) because

�̂ is continuous and it is a linear combination of at most 4 positive de�nite
functions. [ M(Ĝ) is de�ned the way M was de�ned earlier with G replaced by

Ĝ]. Let f(x) =
Z
�̂(
)
(x)d
. The inversion formula proved earlier states that

�^^(x) = f(x�1) 2 L1 and �̂(
) =
Z
G

f(x�1)
(x)dx for all 
. [ We have used

Pontryagin Theorem here]. The proof is complete.

Extending characters from closed subgroups to whole groups

If H is a closed subgroup of an LCA group G then G=H is an LCA group
when it is given the qutient topology. Let � : G! G=H be the qutient map so
that a set E is open in G=H i¤ ��1(E) is open in G.

z
Theorem
Any character on a closed subgroup H of G can be extended to a character

on G:

Before we can prove this we need some preliminaries. The fact that G=H
is an LCA group is easy to see. [Just use the fact that the quotient map
� : G ! G=H is continuous and open]. Let A = f
 2 Ĝ : 
(x) = 1 8x 2 Hg.
Note that A is a closed subgroup of Ĝ (hence an LCA group in the relative
topology). De�ne �0 : (G=H)

^ ! A by �0(�)(x) = �(xH) for all x 2 G.
Clearly this is a well-de�ned map with range in A: We claim that �0 is a group
isomorphism and a homeomorphism. It is obviously injective. If 
 2 A then
�(xH) = 
(x) gives a well-de�ned element of (G=H)^: continuity of � follows
from the fact that � � �(= 
) is continuous. Thus �0 is a group isomorphism.
Basic neighbourhoods of the identity in (G=H)^ and A are of the type V =
f� : j1� �(xH)j < � 8xH 2 Cg and W = f
 2 A : j1� 
(x)j < � 8x 2 Dg
where C is compact in G=H , D is compact in G and � > 0. Observe that if
C = �(D) then V = f� : j1� � � �(x)j < � 8x 2 Dg = f� : j1� �0(�)(x)j < �
8x 2 Dg = ��10 (W ). Hence, to show that �0 is a homeomorphism it su¢ ces
to show that C is compact in G=H if and only if there is a compact set D
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in G such that C = �(D). The �if� part is obvious. Suppose C is compact
in G=H. For each x 2 ��1(C) there is an open set Ux such that x 2 Ux
and �Ux is compact. Since C �

[
x2��1(C)

�(Ux) (and � is an open map) there

exists a �nite set fx1; x2; :::; xkg � ��1(C) such that C �
k[
i=1

�(Uxi). Let

D = ��1(C) \ [ �Ux1 [ �Ux2 [ ::: [ �Uxk ]. Clearly D is compact. If y 2 C then
y 2 �(Uxi) for some i so y = �(x) for some x 2 Uxi . We then have x 2 D
and y = �(x) so C � �(D). Of course �(D) � �(��1(C)) � C. We have
proved that �0 : (G=H)

^ ! A is an isomorphism and a homeomorphism. By
the next lemma H = fx : 
(x) = 1 8
 2 Ag. Replacing G by Ĝ;H by A we
conclude that (Ĝ=A)^ is isomorphic and homeomorphic to �(H) where � is the
Pontryagin map from G onto G^^. The isomorphism � : (Ĝ=A)^ ! �(H) is
de�ned by (�(�))(
) = �(
A) for all � 2 (Ĝ=A)^.
Now let 
0 2 Ĥ. Consider the map F : (Ĝ=A)^ ! C de�ned by F (�) =


0[(�
�1��)(�)]. This is well-de�ned because �(�) 2 �(H) and (��1��)(�) 2 H.

Clearly F 2 (Ĝ=A)^^. Let �0 : (Ĝ=A)! (Ĝ=A)^^ be the Pontryagin map. Since
�0 is surjective there exists 
 2 Ĝ such that �0(
A) = F . We claim that 
 is an
extension of 
0. Let � = ��1(�(x)) where x 2 H is �xed. In the de�nition of F
put � = ��1(�(x)). Then 
0[(�

�1 � �)(�)] = F (�) = [�0(
A)](�) = �(
A) =
[��1(�(x))](
A). The left side of this is 
0(�

�1(�(x)) = 
0(x). The proof will
be complete if we show that the right side of the equation, i.e. [��1(�(x))](
A)
is 
(x). Recalling that � = ��1(�(x)) we get �(�) = �(x) so �(�)(
) = 
(x)
by the de�nition of �. Now �(�)(
) = �(
A) by the de�nition of �. Hence
[��1(�(x))](
A) = �(
A) = �(�)(
) = 
(x). The proof is now complete.

Lemma
If H is a closed subgroup of G and A = f
 2 Ĝ : 
(x) = 1 8x 2 Hg then

H = fx 2 G : 
(x) = 1 8
 2 Ag:

Proof: G=H is an LCA group. If x =2 H then xH 6= eH so there exists
� 2 (G=H)^ such that �(xH) 6= 1 and � � � (where � : G ! G=H is the
projection map) gives an element 
0 of Ĝ such that 
 � 1 on H but 
(x) 6= 1.
Thus 
 2 A but 
(x) 6= 1. This proves that fx 2 G : 
(x) = 1 8
 2 Ag � H.
The reverse inclusion is obvious.

Theorem
If G is a compact abelian metric group then Ĝ is countable and Ĝ is an

orthonormal basis for L2.

Proof: if 
1; 
2 2 Ĝ then
Z

1(x)�
2(x)dx = 0 if 
1 6= 
2 and 1 if 
1 = 
2.

[ The Haar measure is normalized so as to make it a probability measure].

Indeed if 
 is a character which is non-constant then
Z

(x)dx =

Z

(yx)dx =
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(y)

Z

(x)dx and we can choose y such that 
(y) 6= 1; so, taking 
 = 
1


2
we getZ


1(x)�
2(x)dx = 0]. Since C(G) is separable ( in sup norm) and dense in L
2

we see that L2 is separable too. Hence the orthonormal set Ĝ must be at most

countable. If f 2 L2 and
Z
f(x)�
(x)dx = 0 for every character 
 then f = 0

because kfk2 =



f̂




2
. [ Note that Haar measure is �nite so f 2 L2 implies

f 2 L1 and so f̂(
) =
Z
f(x)�
(x)dx]. This proves the theorem.
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