ERGODIC THEORY

INTRODUCTION

These notes grew out of a one semester course on Ergodic Theory in Indian
Statistical Institute, Bengaluru. Several books have been used extensively. In
particular, the books of Peter Walters and Karl Petersen need special mention.

Apart from a basic knowledge of Measure Theory (inlcuding complex mea-
sures and differentiation of measures) and Functional Analysis ( including Ba-
nach - Alaoglu and Krein - Milman Theorems), Ergodic Theory requires many
non-trivial results from many areas of Mathematics. To mention a few, isomor-
phism theorems of Measure Theory, existence and uniqueness of Haar measure
and extension of characters on closed subgroups of locally compact Hausdorff
topological groups to the whole groups are needed. We include these special
topics in appendices, therby making the notes essentially self - contained. (It
may be hard to cover the topics in appendices in a one semester course). The
appendix on Isomorphism Theorems is based on Cohn”s Measure Theory and
the one on Character Theory is based on Rudin”s Fourier analysis On Groups.

A table of contents appears on page 114

Let (92, F, P) be a measure space and T : 2 — € be measurable. If PoT~! =
P (ie. P(T7Y(A)) = P(A) for all A € F then we say that T is a measure
preserving (m.p.) transformation. We call (Q,F,P,T) a dynamical system
(DS). For example T'(z) = a + = defines a m.p. transformation on R with the
o— field of Lebesgue measurable sets and the Lebesgue measure. Though some
of our results are true for arbitrary positive measures P we shall consider only
m.p. transformations on probability spaces in these notes. Thus P(2) is always
assumed to be 1.

Examples

Ex 0
Interval exchange transfoymatipns:
Consider the partition {[*=1, %) : 1 <4 < n}} of [0,1). Define T : [0.1) —

i

n’
[01) by T(z) = L +zifz € [EL, L) with ¢ < n and T(z) = z — =1L if
z €[4, 2). T is m.p. It is an "interval exchange transformation". We can

also permute the intervals using an arbitrary permutation of {1,2,...,n}.

Ex 1.

Let o € (0,1),9 = (0,1), F = Borel o— field and P = Lebesgue measure.
Let Tx = z + a(mod1). To see that this map is m.p. consider an interval
(a,b) C (0,a). We have T"((a,b)) ={z:z+a<landa<z+a<bjU{x:
z+a>landae+1l<z+a<b+1} =(a—a+1b—a+1)} because



b < aand a > 0. Hence P(T~!(a,b)) = b — a. Similarly if (a,b) C [o,1) then
“1((a,b)) = (a — a,b— a) and P(T~*(a,b)) = b — a. For an arbitrary interval
( b) C (0,1) we have P(T1(a,b)) = P(T7'(a,b) N (0,)) + P(T~(a,b) N

[a, 1)) = P((a,b) N (0,0)) + P((a,b) N[, 1)) by what we already proved and
hence T is m.p. We remark that this map is bijective and T-'2 = 2 — a(mod 1).

Ex.2

Let S! be the circle group and a € S'. Define Tz = az for all z € S'. Let
P be the normalized arc-length measure on the Borel sigma field of S'. Then
T is m.p. [ T is rotation by angle @ if a = €] This map is, in some sense,
equivalent to the previous one. Equivalence of m.p. transformations will be
discussed later.

In above examples T is also a bijection and T~ is also m.p.. Such maps are
called invertible measure preserving (i.m.p.)

Ex. 3
Let Ta = 22 mod(1) on the space of Ex. 1 _
To show that this map is m.p. we compute 77 1[51, :5). This set is the

A 2n b 2n
disjoint union of the intervals [2n+11, 2n+1) and [2n+1 + 2, ST T ) Note that
both these intervals are contained in [0, 1). Thus PT![5E, L) = e+ 5k =

2n . Since dyadic intervals generate the Borel sigma field we have proved that

T is m.p. [ We can show, by the same method, that Tx = kz is m.p. for

any k € N. Note that if = is not a dyadic rational ( so that it has a unique
[o ]

dyadic expansion) and its dyadic expansion is Z st (with ajs € {0,1}) then
k=1

2k

o0 o0
Z 2r) Z seit as seen easily by considering the cases » < 1/2 and x >
k=1 k=2

oo oo

1/2. Tteration gives Tm(z 5E) = Z sit from which we conclude that
k=1 k=m+1
am+1 = [2T7™z]. Thus the coefficients in the dyadic are given by the formula

Ay = 2™ 2], m = 1,2, ... Similar statements hold for Tz = kz mod(1).

Let G be a locally compact Hausdorff topological group. Then there is a
positive measure P on the Borel sigma field of G such that P(gA) = P(A) for
all Borel sets A and all g € G (where gA = {gh : h € A}). Any two such
measures differ only by a multiplicative constant. Such a measure is called a
left-Haar measure. There is also a right-Haar measure [ P(Ag) = P(A)]. If G
is abelian then the two Haar measures coincide. If G is compact then also the
two measures coincide up to a constant factor. The measures are finite in this
case, so there is a unique probability measure P satisfying both of the above
equations. In these notes all topological groups considered are compact we refer
to the measure P as the Haar measure.

Ex. 4



Let G be a compact group and P the Haar measure. Let g € G and Th = gh
for all h € G. Then PT~'(A) = P(g7'A) = P(A) so PT~! = P. Hence T is

m.p.

Ex. 5

Let G be a compact group and P the Haar measure. Let T be a continuous
automorphism of G. Then PT 1(gA) = P((T~'g)(TtA)) = P(T7'A) so
PT~1is also a Haar measure. Uniqueness of Haar measure implies that PT—! =
P. Hence T' is m.p.

Theorem

The only continuous automorphisms of S' are the maps z — % and the
identity map. The only continuous automorphisms of the Torus S* x S! are of
the type T'(a,b) = (a’b", a*b™) where j, k,n, m are integers and jm — kn = +1.
All such maps are continuous automorphisms.

Remark: using the exercise below we show that any continuous homomor-
phism if S! is of the type z — 2" for some integer n. The only continuous
homomorphisms of the Torus S* x S' are of the type T'(a,b) = (a’b™, a*b™)
where j, k,n, m are integers.

Proof:

Let T be a continuous automorphism of S'. Let N be a positive integer.
Define 7 : [N, N] — S' by 7(t) = T(e*™*). A basic result in Complex Analysis
says that this map has a continuous logarithm: there is a unique continuous map
én : [-N,N] — S' such that 7(t) = e?~® for all t € [N, N] and ¢, (0) = 0
[ Note that 7(0) = T(1) = 1]. Uniqueness of such a ¢ shows that ¢)ys are
consistently defined and hence there is a unique continuous map ¢, : R — S*
such that 7(t) = e?® for all t € R and ¢(0) = 0. Now e?(t+5) = T(e2mi(t+s)) =
e?®e?(s) which implies ¢(t + s) = ¢(t) + ¢(s). [ The two sides differ by a
constant of the type 2mik by continuity and they both vanish at 0]. By an
elementary result in analysis we conclude that Re¢(t) = at for some a € R
and Im ¢(t) = bt for some b € R. We have proved that T(e?7) = elatib)t,
Necessarily |e(®t®)t| =1 s0 a = 0. Since e? = T(e*™") = T(1) and €* = T(1)
we get b = 2j7 for some integer j. Thus T'(z) = 27. Since T is one-to-one we
get 7 = £1.

Now let 7' be an automorphism of the torus S* x S!(which is a group un-
der coordinatewise multiplication). Let T3 (z) be the first coordinate of T'(z, 1)
and T5(z) be the second coordinate of T'(z,1). Let T53(z) be the first coordi-
nate of T'(1,z) and Tu(z) be the second coordinate of T'(1,z). Then T} is a
homomorphism of S! for j = 1,2,3,4. Hence there exist integers j, k,n,m
such that Ty(z) = 27,v,Ta(2) = 2F,T3(2) = 2", Ty(z) = 2z™. It follows that
T(a,b) = T(a,1)T(1,b) = (a’,a®)(b",b™) = (a’b",a*b™). We have to deter-
mine when this map is an automorphism. If T is an automorphism the so is 7!
and so T~ 1(a,b) = (a?'b",a¥'b™") for some integers j',n’, k', m’. We now have



(a,b) = TT~(a,b) = (a7 tK'npin’ tm'n qi'ktkmpn'ktm'myyg b e 1. This im-
plies 77/ + k'n =1,jn' + m'n = 0,5’k + k'm = 0 and n’k + m'm = 1. In other

! !
words :1 J ( k., ZZ', > = 1. Taking determinants and noting that the

k J
determinants of the two matrices are integers we conclude that nk —mj = +1.
Conversely suppose nk—mj = +1. The inverse of i has integer entries

because the determinant is &1 and the adjoint has integer entries. Thus there
is a transformation of the type S(a,b) = (a/'b",a* v™") with TS = I = ST. Tt
follows that T is bijective with an inverse which is also a homomorphism. The
inverse is automatically continuous.

Exercise:

Find all continuous maps f : R — S! = T such that f(z +y) = f(2)f(y)
for all ,y. Do the same when S! is replaced by C. Also find all continuous
homomorphisms of T'.

Solution: first part: note that f(0) = 1. Fix a positive integer N. By a stan-
dard argument in Complex Analysis there exists a unique continuous function
hy : [N, N] — R such that f(z) = e”¥@ (|z| < N) and hy(0) = 1. It fol-
lows easily that h/ys define a continuous function i : R — R such that h(0) =0
and f(z) = e’*®) for all real numbers z. Note that e/l*(a+0)=h(a)=h(®)] — 1 5o
h(a+b) —h(a) — h(b) = 2nr for some integer n. By continuity of A we conclude
that n does not depend on a and b. Since 2(0) = 0 we conlude that & is additive.

Since h is additive and continuous there is a real number a such that h(z) =
ax for all 2. Hence f(x) = e'®. Any function of the type e'® satisfies the given
functional equation, so the first part is complete. Now consider the second part.
Since f(0) = f2(0) either f(0) = 0 or f(0) = 1. If f(z) = 0 for some z then
flz+1y) = f(z)f(y) = 0 for all y which gives f = 0. If this is not the case
then f(0) = 1 and f never vanishes. Let g(z) = 2. The first part can

, oIk
be applied to g and we get f(x) = e |f(z)|. Also log|f(z)| is an additive
continuous function on R, so |f(z)| = € for some real number b. We now

have f(z) = e®+)* Now let ¢ : T — T be a continuous homomorphism and
f(z) = ¢(e*™™@). Then f : R — T satisfies the equation f(z +vy) = f(z)f(y)
and f is continuous. Hence f(x) = e?7%® for some real number a. Thus
¢(e?™®) = e?mar_ Gince the left side has the same value for + = 0 and x = 1
we see that a must be an integer. It follows that ¢(z) = 2% Vz € T. Hence
continuous homomorphisms of T" are precisely the maps z — z™ where n is an
integer. Note that such a map is injective if and only if n =1 orn = —1. In
other words, the only automorphisms of T' that are continuous are the identity
map and the map z — %

Exercise: show that continuous homomorphisms of T*(=T x T x ... x T' (n-
times)) are all of the type (21, 22, ..., zn) — (21" 2512, 2000 22 252" L. z02n .
where each a;; is an integer.

This is an easy consequence of the previous exercise.

ey ZYM 2L 20 )



The next example is from Number Theory.

Ex. 6

Define 7' : [0,1] — [0,1] by T(0) = 1 and Tw = 2 — [1]if w > 0. If
we provide [0, 1] with the Borel sigma field and the Lebesgue measure it turns
out that T' is not m.p.. However there is a Borel probability measure P such
that PoT~! = P and P is equivalent to Lebesgue measure m (in the sense
P << m << P). T is called the Gauss transformation and P is called the
Gauss measure.

Let us begin by computing 7~ !(a,b) where 0 < a < b < 1. We have

o0

U{w : % € [n,n+1),w € (b-%n’a-%n)} = U{(b_%n,aj_n)m
n=1
U btn> a+n since (bJan’ a«lkn) C (%ﬂ’ 7) Thus m( ((avb))) =
Z —b-a___ 1f 7 i5 "ebesgue measure ing " th Z N S
DR Iy preserving en CEEI(E=)
n=1 n=1

whenever 0 < a < b < 1. However the left side is strictly monotonic in a (and
b).
Now let P(A) = ﬁ/lixdx We claim that P oT~! = P. Recall that
A

(o)
U Tt ) and the union here is a disjoint union. Hence it
n a+n

n=1
1
00 a+n b
suffices to show that Z ﬁ / 1_1HC dr = /ln(2 1_1m dx. It is easy to see that
n=1 _1 a
b+n

the (telescopic) product H ‘gixii Ziz converges to 2%_} The desired equation

n=1
is obtained by taking logarithms on both sides.
Measure preserving transformations in Hamiltonian dynamics: the state of
a system at time ¢ is (p1(t), p2(t), ..., pn(t), q1(t), g2(t), ..., ¢n(t)) where the p's
are the positions on the n particles in the system and the ¢'s are the momenta

of the particles. The motion is governed by the equations
dqi _ OH 9pi __ _OH ;
ot — Op;’ ot dg 01 St<n

where the Hamiltonian H is a function from R?" to R. Define T}, ¢ > 0 on R?"

by Tt((p17p27 s Pnsq1,42, -0y Qn)) = (pl (t)7p2(t)7 "'7p7l(t)a q1 (t)7 qQ(t)7 seey Qn(t))
where the right side is obtained by solving the system of partial differential equa-

tions above with the initial conditions (p1(0), p2(0), ..., pn(0), ¢1(0), g2(0), ..., ¢, (0)) =
(pl;an ey Pnyq1,42, .-, Qn)

Theorem [Liouville]
Each T} preserves Lebesgue measure on R?".



We shall not prove this theorem.

In above example the maps {7} } > satisfy the physically intuitive properties
To =1 and Ty s = T3 0T for all £, s > 0. Such a collection of measure preserving
transformation is called a flow if (z,t) — Ti(x) is measurable.

Of course the example from Hamiltonian dynamics does not satisfy our as-
sumption that the basic measure space is a probability space.

Ex. 7
This and the next example are from Stochastic Processes.
Let Q = R, the Space of all sequences of real numbers with the Frechet

. an_bn
metric d({an}, {bn}) = Z 2n[‘1+|an7‘b m

Exercise: the Borel sigma field F of 2 coincides with the sigma field gener-
ated by the projection maps p1, ps, ... defined by p,({a1as,...}) = apn.

A set of the type {w € Q : (Wn,, Wny,...,wn, ) € A} where k is a positive
integer, ni,ns,...,ny are distinct positive integers and A is a Borel set in R
is called a cylinder set. Noting that {w € Q : (Wn,, Wny,...,wn,) € A} =
(Prys Prgs -+ Py, )~ L(A) we see that the cylinder sets generate the Borel sigma
field. Note that a given cylinder set has many representations; for example
{w:w € A} = {w : (w1,ws) € A x R}. We claim that cylinder sets form a
field. This is easily seen from the fact that the set of coordinates in a cylinder
set can always be enlarged (using the ’* xR’ technique) so that any two sets can
be defined in terms of the same set of coordinates.

A probability measure P on the Borel sigma field of ) is called a product
measure if P{w € Q : (wn,, Wn,, ..., wn, ) € A1 xAsX.. XA} = Py, (A1) Py (A2)... P,
for some probability measures Py, Ps, ... on R.

We now assume that P is a product measure in which P, = P; for all n.

Claim: pi,pa,... is an i.i.d. sequence on (92, F, P).

Remark: this example is a typical i.i.d sequence in some sense. This will
elaborated upon later.

ng (Ak)

Proof: P{w : (p1(w),p2(w),...,pr(w) € Ay xAaX...xA)} = P1(A1)P2(As)...Pi(Ag)

and p{w : pi(w) € Ai} = Pi(4;) so P{w : (p1(w), p2(w), .-, pr(w) € A1 X A x
WX Ap) = Pl{w:p1(w) € A1} P{w : p2(w) € As}...P{w : pi(w) € Ay}

Now define T :  — Q by T(wy,wa,...) = (w2,ws,...). We claim that
this map is m.p. The fact that PT~!(A) = P(A) for a cylinder set A fol-
lows immediately from P{w € Q : (Wn,, Wny,...;Wn, ) € A1 X Az X ... X A} =
Py (A1) Pi(As)...P1(Ag) and since cylinder sets generate the Borel sigma field it
follows that T is m.p..

Ex 8

This is similar to Ex. 7 but we replace R by a finite set. Let S = {1,2,..., N}
and p; > 0(1 <4< N) with py +pa+...+pny = 1. Let = S, the space of all
sequences from S. Let P be a probability measure on the sigma field generated



by cylinder sets of Q such that P{w; = i1,ws = i9,...,wx = ik} = PiyDiy---Piy-

Thus P is the ’distribution’ of an i.i.d sequence of random variables taking values
in S. T defined as in above example is again m.p.. We call such a T a Bernoulli
shift.

Ex. 9
Stationary shift

A sequence {X,,} of random variables on (2, F, P) is said to be stationary if
the joint distribution of (X, , Xy, , ..., Xn, ) is same as that of (Xpn; +m, Xnotm, s Xngtm)
for any positive integer m. Let us consider the ’canonical version’ of this, i.e.
assume that 2 = R F = cylinder sigma field and P is a p.m. such that
P{w : (Wny+msWnytmy s Wnytm) € A} is independent of m € {0,1,2,...}. Let
T be the usual shift on Q : T(wy,wa,...) = (w2, ws,...). Then T is m.p. Just
take m = 1 in the definition to show that P(T~1(A)) = P(A) for any cylinder
set A. We remark that the shift in the case if independent p!, s need not be m.p.;
it is m.p. iff p/ s are i.i.d. Conversely, if the shift corresponding to a sequence
{X,} is m.p. then the process {X,,} is stationary.

Ex. 10

Markov shift

If the measure P on R* makes {p,} a Markov chain the shift 7" need not be
m.p.. It is m.p. if the Markov chain has a stationary distribution and the chain
starts with this distribution. If this condition holds we call T a Markov shift.

Ex. 11

Affine maps

Composition of two m.p. transformations on the same probability space is
m.p.. A map on a topological group G of the type h — ¢T'(h) where ¢ is a
fixed element and 7T is a continuous automorphism is called an affine map. By
Examples 3 and 4 above this map is m.p..

We now begin with a study of m.p. transformations. If w € Q the set
{T™(w)} is called the orbit of w under T. It is useful to think of T"w as the
position of a point at time n.

We now show how to construct an i.m.p. transformation from a m.p. trans-
formation.

Let (0, F,P,T) be a DS. Let Q¥ = H Q; where Q; = Q for each 7. Let Qg =
i=0

{(w;) € : Tw; = w;_1 Vi > 1}. Let Fy be the trace of the cylinder sigma field

of ' on Qq. Let Q be the probability measure on 2’ which makes the projection

maps i.i.d. with common distribution P. Let S(wg, w1, ...) = (Two,wp, w1, ...).
Then S is i.m.p and it is ergodic iff T is.

Theorem [Poincare’s Recurrence Theorem]



Let (Q,F,P,T) be a DS and P(A) > 0. Then P{w € A :T™(w) € A for

infinitely many n} = P(A).

Proof: let A, = U T %A,n=0,1,2,... (T° = I). Then A,, is decreasing
k=n

and T71(A,) = A,41. Since T is m.p. we get P(4,) = P(4g) for all n.

This and the monotonicity of A} s shows that P(A4,AAy) = 0 for all n. Let

(o)
B = ﬂ Ay,. Then Then B C Ap and P(BAAp) = 0. Therefore P((AN
n=0

B)A(AN Ap)) = 0. Hence P(ANB) = P(AN Ag) = P(A) (because A C Ay).
The result follows if we show that AN B C {w € A :T™(w) € A for infinitely

many n}. If w € AN B then for each n w € A, and hence w € T"*A (or
T*w € A) for at least one k > n.

Poincare also proved a topological property of an open set of points that
return to it infinitely often.

Theorem

Suppose 2 is a metric space and F its Borel sigma field. Let P be a Borel
probability measure with full support (i.e. P(U) > 0 for every non-empty open
set U). Let T be a continuous m.p. transformation on 2. Then for any open
set U the set of points of U which return to it infinitely many times is the
complement of a set of first category in U.

[ Hence the points of U which return only finitely many times if both measure
theoretically and topologically small].

Proof: for any fixed open set U consider Ay, = {x € U : T’z ¢ U Vi > k}.

This set is clearly closed and so A = U Ay is an Fy. Note that E, = U\A is
k=1
precisely the set of points of U which return to U infinitely many times. FE,

is a G5 because A is an F,. Also, since every non-empty open set has positive
measure previous theorem implies P(E, ) = P(U). This implies that E,, is dense
in U. Hence F, is a dense G5 in U and this implies that its complement in U
is of first category.

Remark: more topological results will be proved later in the section on
"Topological Dynamics’. In particular we prove another recurrence theorem
there called The Birkhoff’s Recurrence Theorem.

Definition: let (Q2, F, P,T) be a DS. We say T is ergodic if T-1(A) = A, (A €
F) implies P(A) =0 or 1.

A set A € F with T~1(A) = A is called an invariant set. The collection of
all invariant sets is a sigma field called the invariant sigma field.



Examples:

Examples 1 and 2: we claim that the transformation in the first example is
ergodic iff « is irrational and the one in Example 2 is ergodic iff a is not a root
of unity.

Suppose « € (0,1) be irrational. Let A be an invariant set for the transfor-
mation in Ex. 1 and define f € L%([0, 27]) by f = Is;4. Consider the Fourier co-

2w 1

efficients f(n) of f. We have f(n) = %/e‘i”wlg Alz)dx = /e_%myIA(y)dy.

0
1

1
Hence f /6 27rznyIT /6727rzn(z @ IA( )dZ — eQ'frinozf(n)'

0

Since e2™n® = 1 iff n = 0 we see that f(n) = 0 for n # 0 which means f is a.e.
constant. Thus o4 = 1 a.e. or I3;4 = 0 a.e. which implies that P(A) =0 or
1.

Now suppose « is a rational number 5. Let A= {w:e*™* € C} where C
is a Borel set in S'. This set is invariant. If T is ergodic then P(4) = 0 or 1
for any C. The measure @ induced by the function w — e2™%4% takes only the
values 0 and 1.

Exercise

Show that such a measure is degenerate, i.e. Q = §, for some a € S*.

Hint: use a compactness argument.

We now conclude that e2™%9“ is a.e. constant. Being continuous, it must be a
constant everywhere and so > = 1 for all w € (0, 1). This is a contradiction.

The proof of the corresponding result for a rotation on S! is very similar
and we omit the details.

Ergodicity of the transformation in Ex. 7

This is an easy consequence of Kolmogorov 0 — 1 Law: if T71(4) = A
then A € o{pn,pn+1,...} for each n and hence P(A) = 0 or 1. [ Indeed A €
o{p1,p2,...} and so T~1(A) € o{py, p3,...}: this is easy to verify for a cylinder
set A and the collections of all Borel sets A which satisfies this property is a o—
field.

We now prove a basic theorem on ergodicity:

Theorem

With above notations, FAE:

1. T is ergodic

2. P(AAT~Y(A)) = 0 implies P(A) =0 or 1.

3. P(T~"(A)N B) = 0 for all n € N implies P(4) = 0 or P(B) = 0.

4. If f:Q — R is measurable and f(T'(w)) = f(w) for all w then there is a
constant ¢ such that f = c a.e.



[Def: An invariant function for T is a measurable function f such that
f(T(w) = f(w) for all w].

5. If f: Q — R is measurable and f(T'(w)) = f(w) for almost all w then
there is a constant ¢ such that f = c a.e.

6. If f € L? and f(T(w)) = f(w) for all w then there is a constant ¢ such
that f = c a.e.

7. If f € L? and f(T(w)) = f(w) for almost all w then there is a constant c
such that f =c a.e.

8 If f € L' and f(T(w)) = f(w) for all w then there is a constant ¢ such
that f = c a.e.

9. If f € L' and f(T(w)) = f(w) for almost all w then there is a constant c
such that f = c a.e.

Proof: Suppose P(AAT~'(A)) = 0. Let B be the set of points w such
that T"(w) € A for infinitely many positive integers n. It is clear that B is an
invariant set. Hence P(B) = 0 or 1. Note that /4 = I7-1(4) a.e.. By iteration
this gives Iy = I7-n(4) a.e. for each n. Hence I = limsuply-n(4) a.e. which

means 4 = Ip a.e. Hence P(A) = P(B) =0 or 1.
Since 2) obviously implies 1) we conclude that 1) and 2) are equivalent.
3) implies 1) follows by taking B = A°. We now prove 2) implies 3). We

have P(( UT "A)NB) =0. Let C = UT "A. Then T~YC) C C. Also
n=1 n=1

P(T~Y(C)) = P(C) ( because T is m.p.) and hence P((T~'C)AC) = 0. By

2) P(C) = 0or 1. If P(A) > 0 then P(C) > P(T-'(A)) = P(A) > 0 and

P(C) = 1. But P(CN B) = 0 and hence P(B) = 0. We have proved the

equivalence of 1), 2) and 3).

1) implies 4): let f be as in 4). For every a € R the set A = {w: f(w) < a}
is an invariant set. Thus P{w : f(w) < a} = 0 or 1 for each a. Since this
probability is a monotonic function of a is easy to see that there is ag such that
P{w:f(w)<a}—0ifa<a0 and P{w: f(w )<a}—1ifa>a0.ThusP{w:
fw) ¢ lag— a0+ 5)} < Plw: f(w) <ag— 3} +P{w: f(w) > ao+ 5} =0+0
for each n. Letting n — oo we get P{w : f(w ) =ap} =1

4) implies 1): just take f = I4.

The equivalence of 2) and 5) is similar to that of 1) and 4): if f(T(w) =
f(w) for almost all # and A = {w : f(w) < a} then P(AAT1(A)) = 0 since
Ir-1ay(w) = IA(Tw) = {w : f(T'(w)) < a} which differs from {w : f(w) <
a} = A only by a null set. Conversely P(AAT 1(A)) = 0 and f = I4 imply
f(T(w) = f(w) for almost all w.

Since indicator functions belong to both L' and L? it is clear that we can
restrict f to functions in either of these spaces without any change in proof.
This completes the proof.

In the course of the above proof we have made an elementary but very useful
observation:

if T is ergodic and C is a measurable set with T=1(C) C C then P(C) =0 or
1. Indeed P(T~1(C)) = P(C) ( because T is m.p.) and hence P((T~1C)AC) =
0 and we can apply equivalence of 1) and 2).

10



The same conclusion holds if C C T~1(C); if T is i.m.p and ergodic we can
replace the hypothesis by either of the two conditions T(C) C C,C C T(C).

Theorem

Let X be a compact metric space and P a Borel probability measure on X
with full support (i.e. P(U) > 0 for every non-empty open set U). If T': X — X
is ergodic then almost all orbits are dense (i.e. P{z: {T"(z) :n=0,1,2,...} is
dense in X} =1.

oo o0

Proof: let {U,} be a countable base for the topology. Then z € ﬂ U T-*U,
n=1k=0

iff the orbit of x intersects each U, iff the orbit of z intersects each open set
oo (oo}

iff the orbit of z is dense. It remains to show P{ ﬂ U T7*U,} = 1. Let
n=1k=0

C, = U T-*U,. Then T~!(C,) C C, and hence P(C,) = 0 or 1. However,

k=0
[eS)

Cpn D U, and P(U,) > 0so P(C,,) = 1. This is true for each n so P( m Cp)=1

n=1
as required.

Remark: this theorem proves that if a rotation z — az on S! is ergodic then
the orbit of some point is dense which means {a"},,>¢ is dense. [ The orbit of
some point is dense implies orbit of every point is dense!].

For the next theorem we need the following facts from the theory of topo-
logical groups:

Let G be a compact metric topological group and G its dual group. G is the
collection of all characters on 7, i.e. continuous homomorphisms v : G — S!
which is a group under pointwise multiplication. Let P be the Haar measure
on G. [Recall that on any compact group there is a unique probability measure
P on the Borel sigma field such that P(gA) = P(Ag) = P(A) for all Borel sets
A and all g. This measure is the Haar measure of the group]. Each character
v belongs to L?(P) and any two distinct characters are orthogonal: if v; # 7,
then v = % is also a character and /’ydP = /v(ag)dP(g) (by definition of
Haar measure)

= v(a) / ~vdP for each a. Since -y is not the constant character it follows that

/ vdP = 0. This means / 7172dP = 0 as stated. Of course each character has

norm 1 in L2. Since G is a compact metric space the space C(G) is separable and
C(QG) is dense in L?. Thus L? is separable too ( since uniform approximation

implies approximation in L?) and hence G is a countable set {7,;}. It can be
shown that the orthonormal set {v;} is complete. [ If we assume that for each

11



g # 1 there is a character + such that v(g) # 1 the we can use Stone-Weierstrass
Theorem to conclude that the vector space spanned by the characters, which is
clearly an algebra, is dense in C(G) and this implies that {7,} is complete. We

refer the reader to Theorem (22.17), p. 345 of Abstract Harmonic Analysis Vol
I by E. Hewitt And K. A. Ross]. The expansion of an L? function w.r.t. the
orthonormal basis {,} is called the Fourier series expansion of f.

Theorem
Let G be a compact metric topological group and T'g = ag. Then T is
ergodic iff {a"},,>0 is dense. In this case G is necessarily abelian.

Proof: T is ergodic implies {a™ },>¢ is dense. This follows from above corol-
lary and the fact that Haar measure has full support. Now suppose {a"},,>¢ is
dense. It is clear that G is abelian. Let f € L? and f o T = f. Recalling that

the dual group G is countable, say, {v;,7s,...}, and that the characters {v;}
form an orthonormal basis for L? we can write f = Z < fyv; > ;- Hence

flg) = f(Tg) = Z < f,7; > v,(ag) Z < f,% > v,;(a)y,(g). Thus

Z < fovi > = Z < f, v > vi(a)y;. Orthonormahty of v}s implies that

1
< fivi >=< f,v; > 'yi(a) for each i. If v;(a) = 1 then v,(a™) = 1 for each n
and the hypothesis now implies that v, = 1. Thus < f,v; >= 0 except when
v; = 1 which implies f = Z < f,7v; > v, is a constant. This completes the
i
proof.

Theorem
The map T : S — S! defined by Tz = az where a € S* is ergodic iff a is
not a root of unity.

Proof: we have to show that {a"},>¢ is dense in S* iff a is not a root of
unity. If a is a root of unity then {a”},>0 is a finite set and hence it is not
dense. Suppose now that a is not a root of unity. Then {a,a?, ...} is an infinite
set and hence it has a limit point. Hence, if € > 0 we can find posmve integers n
and k such that |a” - a"‘”"} < €/2. For some m the points a™,a"**, ... a"tmk
form an € net for S'. This of course implies that {a"},>0 is dense in S*.

APPENDIX
SEPARABILITY OF C(X)

Theorem

12



Let X be a compact Hausdorff space. Then X is metrizable iff C'(X) is
separable.

One way is easy. if {f,,} is dense in C(X) then d(z,y) Z - [‘lﬁl(fi(m{n fi)(ly)\]

defines a metric on X such that the identity map from X With the original topol-
ogy to X with the metric d is continuous (in view of continuity of the functions
fr) and the inverse map is automatically continuous by compactness.

Now let (X, d) be a compact metric space. For each n we can find a finite set
{Tn1, 02, ., Tk, } such that X = B(2,1 1) UB(2n22)U...UB (20, 1). Let

en

fn,i be a continuous function : X — [0,1] such that f, ;(z) = 1if d(z,zn;) < =

and fi, ;(x ) =0ifd(z,x, ;) > 2. If & # y choose n such that 2 < d(z,y). Then
z € B(zy,;+) for some i and f,, z( ) = 1 Also d(y,zn ;) > 2 because otherwise,
d(z,y) < d(a: Tni) + Ad(Tn i y) < = + = % a contradlctlon Thus f,.(y) =

0# 1= f,:(x). We have proved that the set {fni:1<i<k,n=12..}
separates points. By Stone-Wierestrass Theorem finite linear combinations of
finite product of these functions form a dense subalgebra of C'(X). Hence finite

rational linear combinations of finite product of these functions form a countable
dense subset of C(X).

End of Appendix

Ergodicity of a continuous homomorphism on the torus S' x St ( coordi-
natewise multiplication).

Let T : S'x S' — S x S! be a continuous homomorphism. Then there exist
integers a, b, ¢, d such that T'(u,v) = (u®v®, uv?) V(u,v) € S' x S. To see this
note that the two components of T'(u, 1) and T'(1,v) are homomorphisms of S*.
Since any homomorphism of S! is of the type u — u® for some integer a and
since T'(u,v) = T(u,1)T(1,v) we are done. Let us prove that T is surjective if
a b

d
proper (compact) subgroup and hence there is a non-trivial character which has
the value 1 at every point of the range. Hence there exists characters v;,7y4 of
S* no both 1, such that v, (u®®)y, (uv?) = 1 Vu v € S'. There exists integers
A1, A2 such that v;(u) = v and v5(v) = v*2; thus . ytriterzgpbhtdia =
which implies a\; 4+ cAo and bA; + dAy = 0. Note that Ay and Ay cannot both

and only if det # 0. Indeed, if T is not surjective then its range is a

be 0. It follows . that the matrix < z Z > is singular and its determinant

is 0. Conversely, if the determinant is 0 then there exists integers A1, Ao not
both 0 such that al\; + ¢Aa and bA\; + dAy = 0. [ There exists a real number
A such that A(a,b) = (¢,d) and A is obviously rational. If A = L we can take
A1 = p,Aa = —¢q]. For any point (£,{) = T'(u,v) in the range of T" we have
5/\1@2 = yMipbriyAzgyddz = 4090 = 1. This implies that T is not surjective. |
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For example (£,1) is not in the range of T if £ is not a root of unity if A; # 0
and (1,¢) is not in the range of T if ¢ is not a root of unity if Ag # 0].

We now use the following characterization of ergodicity of onto homomor-
phisms of compact metric groups:

if G is a compact metric group and T : G — G is a surjective homomorphism
then T is ergodic if and only if the condition v o T = « for some character
of G and some non-zero integer n implies v = 1.

[ Proof: suppose f € L' and foT = f. Let f = Zan'yn be the Fourier series

of f. Then Z any, 0T’ = Z anY,, Vj. Fix n and suppose 7, o T, 7, oT?,7,, o
T3, ... are all distinct. Then a,, = coefficient of y,,0T7 on the right side and these
coefficients are ap, , Gp,, ... for distinct n.s. Hence Z lan|® = Z lan|? = oo,

1 K3

a contradiction unless a,, = 0. Hence 7,, o T,7,, o T?,7, o T3, ... cannot all
be distinct except when a, = 0. However, v, o T = ~, o T',k < [ implies
Yo 0 T'F = 7,. If we assume that v o T" = ~ for some character v of G
and some non-zero integer n implies v = 1 it follows that the only non-zero
coefficient in the series Zan'yn is the one corresponding to v = 1 and so f
is a constant. This proves the if part. Now suppose T is ergodic. Suppose
v oT™ = v for some character v of G and some non-zero integer n. We have
to show v = 1. Let m be the least positive integer such that v o T™ = ~. Let
f=~v+~v0oT +vo0T?+ ... +~voT™ ! Then f is an invarant L' function,
hence constant. Since v,y o T,yo T2, ...,y o T™ ! are distince characters they
are orthogonal and this is possible only when m =1 and f = v is a constant].

Theorem
With above notations T is ergodic if and only if no root of unity is an eigen
b
value of d

Proof: if T is not ergodic then there is a non-trivial character v and a non-
zero integer n such that v o T™ = ~. Since v(z,¢) = (¥, ¢') for some integers
k,l not both 0 we have (uvP)k(uCvP) = (uF v!) for all u,v € S' where

(g g)z(z cbl) . This implies Ak + Cl = k and Bk + DI = .
B

. A A B\ .
This proves that transpose of < C D >, hence < C D > itself has 1 as

an eigen value. Since eigen values of (

b
d

c g > are the n — th powers of

a

those of < (é ) we have proved that ( c b > has an n — th root of unity

d

. . . A B
as an eigen value. Conversely suppose 1 is an eigen value of C D =

n

a b . . P

Jhence an eigen vaue of its transpose, for some positive integer n.
c d
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Then there exist integers A1, A2 not both zero such that 4 ¢ M =
B D Ao

< il > Let v,(z) = 2™ and v,(2) = 2*2. Then v = (71, 7,) is a non-trivial
2

character of S' x S'. We claim that v o T = ~. For this we have to show
that (uAvB)* (uCovP)*2 = yroP2. This is true because A\; + CAo—y, and
BM + DXy = )Xo

Remark: the result extends to the k— torus S' x S' x ... x S*.and the proof
is similar.

Necessary and sufficient conditions for ergodicity of affine maps will be given
later.

The Guass transformation (Ex. 6) is ergodic. Proof will be given later.

THE ERGODIC THEOREM

The Ergodic Theorem is really a set of theorems about the convergence
of certain ’time’ averages. We prove a number of versions of this important
theorem.

Theorem [von Neuamnn Ergodic Theorem (alias Mean Ergodic Theorem)]
Let H be a Hilbert space and U : H — H be an isometry. If x € H then
{(x+ Uz +U%z+ ...+ U" 'z)} converges to some point z € H with Uz = z.

Proof: let M be the closure of the range of (I —U) and N = {x : Uz = x}.
Clearly M and N are closed subspaces of L?. We claim that M+ = N. Note
that 2 € Mt o< 2,y — Uy >= 0Vy o< ¢ — Urz,y >= 0Vy < U*z = z.
We have to show that the conditions Uz = z and U*x = x are equivalent for
isometries. We have ||[U*z — z||* =< U*z — z,U*z —z >

= |U*z|* + ||z||* = 2Re < Uz,z >. Hence Uz =  implies |U*z — z||> =
Tl — ||=)* < U] ||=]* = |l

= JUI lz|> = ||z||*> = 0 and so U*z = z. The reverse implication fol-
lows by changing U to U*. This proves the claim. Now let x € L?(P). We
can write x = y + z where y € M and z € N. Hence %(m + Uz + U%z +
e+ U z) = Ly +Uy+ U+ .+ Uy + 22+ Uz + U%2 + ... +
U™ 12). The second term is z (independent of n). If € > 0 then there exists
u such that ||y — (I —U)ul| < e. Let v = u — Uu so that ||v —y| < e. Now
u%(y +Uy+U%+..+U0" ) — Lo+ Uv+ U +... + U"‘lv)H < € and
L+Uv+U0+...4U" ) = L((u—Uu)+(Uu—U?u)+...+ (U u—U"u)) =
L(u—Umu) — 0asn — oo. It is now clear that 2 (y+Uy+U?y+...4+U" " 1y) — 0
asn — oo and hence L (z+Uz+U?z+...+U" 'z) — 2. The proof is complete.

Remark: the limit here is obviously the projection of z on N = {z : Uz = z}.

What has this theorem to do with m.p. transformations? Well, if (2, F, P,T)
is a DS then H = L?(P) is a Hilbert space and U f = f oT defines an isometry
on it. Thus we have:
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Corollary
Let (Q,F,P,T) be a DS and f € L?(P). Then
{L(f+foT+ foT?+...4 foT™ 1)} converges in L? norm to an invariant

function g with /fdP = /gdP. If T is ergodic then g is constant a.e..

Proof: Only the last part needs a proof. Since L? convergence implies L'
convergence we get /gdP = lim{%(/fdP—&-/fonP—&—...—i—/foT”_ldP) =

/fdP. The limit g satisfies g o T = g a.e. and hence it is a constant if T is

ergodic.

Corollary [ The L' Ergodic Theorem]
Let (Q,F,P,T) be a DS and f € L'(P). Then
{L(f+foT+ foT?+...4 foT™ 1)} converges in L' norm to an invariant

function g with /fdP = /gdP. If T is ergodic then g is constant.

Proof: if f € L'(P) and € > 0 then there exists g € L?(P) such that
If=glly <e Let ¢, = 3(f+foT+fol?+ ..+ foT" ") and§, =
L(g+goT+goT?+...4+goT"~1). Then ||, — &, |, < e because || f — g, < eand
T is m.p.. It follows that ||¢,, — &,,1l; < 2e+1€, — Emlly < 26+16, — Enlly < 3€
if n and m are sufficiently large. This proves convergence of {%(y + foT+

foT?+ ..+ foT™ 1)} in L' norm. The equation /fdP = /gdP and the

fact that g is a constant when T is ergodic are proved exactly as in previous
theorem.
We now prove a more powerful version of the theorem.

Theorem [Birkhoff Ergodic Theorem alias Pointwise Ergodic Theorem)]
Let (Q,F,P,T) be a DS and f € L'(P). Then
{L(f+ foT+foT?+ ..+ foT" )} converges almost everywhere and

in L' to an almost invariant function g with / fdP = / gdP. If T is ergodic
then g is constant.

We first prove the following:

Theorem [ Maximal Ergodic Theorem|]

Let (9, F,P) be a probability space, U : L'*(P) — L'(P) be a positive
contraction (i.e. a linear map such that Uf > 0 whenever f > 0 and ||U|| < 1).
Let N € N,f € LY(P),s0(f) = 0,sx(f) = f+Uf +U?f + ...U*'f and

Fy =max{s;(f) : 0 <k < N}. Then / fdP > 0.

{z:Fn(z)>0}
Proof: (due to Garcia)
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Note that if 0 < n < N then Fy > s, and the hypothesis implies UFy >
Usp = Spt1 — f. Hence UFN 4+ f > max{s,t1 : 0 < n < N} = max{s, :
1 < n < N} On the set {z : Fy(xz) > 0} we have max{s, : 1 <n < N} =
max{s, : 0 <n < N} = Fy. It follows that UFy+ f > Fy on {z : Fx(z) > 0}.

Hence / fdpP > / FndP — / UFNdP = /FNdP —

{z:Fn(2)>0} {z:Fn(2)>0} {z:Fn(2)>0}

UFndP
{z:Fn(z)>0}

> / FndP — / UFndP (because UFy > 0). But / UFndP = |UFy|, <

|Fnll, = /FNdP and hence /FNdP— /UFNdP > 0.

In particular if (2, F, P,T) a dynamical system then U f = f o T defines an
operator on L!(P) satisfying the conditions of the theorem.

Proof of Birkhoff’s theorem: let g(x) = lim sup%(f +foTlT+foT?+ ..+

foT" 1) (z) and h(z) = liniinf%(f +foT + foT?+ ...+ foT" 1) (z).
We claim that g and h arenin(\)/oariant. This follows easily from the identity
Lf+foT+foT?+ ..+ foT )Ta)=2L(foT +foT?+..+fo
T)(z) =2 25 (f+ foT+ foT? ...+ foT")(x) — £ f(x). Let a < b with
a,b € Q. Consider E,p = {z : h(z) < a < b < g(x)}. We have T (E,;) =
E.p and Eup C {z :sups(f+ foT + foT? + ..+ foT™ )(z) > b} =

E, (say). We apply the Maximal Ergodic Theorem with (Q,F, P) changed

to (Eqp, F N anb,%}fl*;’),ﬂEa’b) and f replaced by f —b and . We get

(f —b)dP > 0. Clearly, the sets {x : Fiy(z) > b} increase to Ejp(

{z:Fn(2)>b}NE,.

and E,; C Ep). Thus, letting N — oo we get /fdP > bP(E,). Replace f

Eap

by —f and (a,b) by (—=b, —a) to get / fdP < aP(E,}). These two inequalities
Eqp
give bP(Eq4p) < aP(E,) which implies that P(E, ) = 0. Varying a and b we
conclude that g = h a.e. which means {1(f+ foT + foT?+ ..+ foT" 1)}
converges almost everywhere.
To prove L' converges we observe that M = {f € L' : {1(f+ foT+ foT?+
ok foT™ 1)} converges in L'} is a closed subset of L. This follows easily from

the fact | (f+ foT+ foT?+. .+ foT™ )= L(f+foT+ foT?+. ..+ foT™ )|,

||%(g+gOT+gOT2+...+gOT"*1)—%(g+gOT+QOT2+...+gOTm*1)||1+

2||f —gll; in view of the fact that T is m.p.. Thus, if f € M and ¢ > 0 we
can choose g € M with || f — g||; < € and the inequality just derived shows that
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{L(f+foT+foT?*+..+ foT™ 1)} is Cauchy, hence convergent in L'. Since
M contains L*° by Dominated Convergence Theorem we conclude that M is
dense and closed, hence equals L'.

Let g be the pointwise and L' limit of {1 (f+ foT+ foT?+ ...+ foT™ 1)}
We have go T =limX(foT + foT?+ ..+ foT™) :lim%(foT—i—foT2+

e F foT™) :limniﬂ(fOT—l—fOTz—|—...—|—fOT”)(x) =g,s0g0T =g

a.e.. By L' convergence and the fact that T is m.p. it follows that / gdP =

lim/%(f oT+ foT?+ ..+ foT™)dP = /fdP and the proof is complete.

Remark: with a little extra effort we can show that the theorem is true if
we replace the probability measure P by an arbitrary positive measure.

Identifying the limiting function:

let G consist of those sets A € F for which Ip-14) = I4 ae. ( ie.
P(AAT~Y(A)) =0). G is a sigma field. We have:

Theorem

Let (Q,F,P,T) be a DS and f € L'(P). Then

{%(f +foT+ foT?+ ...+ foT™ 1)} converges almost everywhere and in
L' to E(f|G).

Proof: let g be the limit of {X(f + foT + foT? + ...+ foT" )} in
Birkhoft’s Theorem. We claim that g is measurable w.r.t G. Indeed g = go T
a.e.. Hence, for any Borel set C' in R Ip-1,-1(¢) = I(gor)-1(0) = Ig-1(c) a-e.

so g~ 1(C) € G. It remains only to show that /fdP = /gdP for all g € G.
A

A
But this follows from L' convergence in Birkhoff’s theorem and the fact that

/%(f—i—foT—i—foTz+...+foT”*1)dP:/fdP.

A

Theorem

FAE

a) The limiting function in Birkhoff’s theorem is a.s. constant for every
felLt

b) the sigma field G is trivial in the sense every set in this sigma field has
probability 0 or 1

c) E(f|g) = /fdP a.s. for every f € L'.
d) T is ergodic.

Proof: for a) implies d) take f = I4 where A is invariant; for ¢) implies b)
take f = I4 where A € G. Rest of the proof is straightforward.

Theorem [ Strong Law Of Large Numbers]
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Let {X,} be an i.i.d. sequence of random variables on a probability space
(Q,F,P). If E|X;| < oo then F1tXebetXa  BX) a5 and in L.

Proof: we use the ideas from Ex. 7 above. Let Q; = R*,F; = Borel
sigma field of Q; and Q = P o (X1, X»,...)" L. Let Y,, be the projection to the
n — th coordinate. Then {Y,,} is i.i.d on (1,71, Q). Also, Y,, = Y7 o T™ where
T(a1,az,...) = (az,as,...). Let E = {{a,} € R : lim “1F02tetn oxjgts}. We
leave it as an exercise to show that this set is indeed a Borel set in R*°. It follows
that Q(E) = P(X1,Xa,...) 1 (E). Birkhoff’s theorem implies that Q(E) = 1

{Xal) b Xo(@) b F X W) convergest = 1. Also

and we conclude that P{w :

HX1+X2+-~+Xn _ Xa X+ 4+ X0 || ..+ X, Yi4Yot. 4Yy,
n m 1 n m

X+ Xot.+ X0 converges in L' too. The limiting random variable Z is invariant

n
and T is ergodic and hence Z is a.s. constant. By L' convergence the constant

is /deP. This completes the proof.

_ H leX2

1—>Oso

Theorem [LP Ergodic Theorem)]

Let (Q,F,P,T) be aDS. and f € L? where 1 < p < co. Then {(f+ foT+
foT?+...+foT™ 1)} converges in LP. More generally let U : LP — LP be a linear
map such that sup{||[U"|| : n > 0} < co. Then {2 (f+Uf+Uf+..+U""'f)}
converges in LP. The limit function g satisfies Ug = g.

Proof: {X(f+Uf+U?f+..+U""'f)} is bounded sequence in LP. Hence
there is a weakly convegent subsequence. Let i (FHUF+Uf+. AU ) —

g weakly in LP. Since U is (weak-weak) continuous we have [hU.-(f +Uf +

1
Uf + ..+ U7 f)dP — [ hg VYh € L where ¢ = 25, Now f —U"f = (I —
n—1
U) Z U7 f. Averaging over 0 < n < ny we see that f— nik(f+Uf+U2f—|—...+
=1
Ure=tf) = (I-U)h for some h € LP. Let fj, = %(f+Uf+U2f+...+U”’f_1f).
We claim the following:
): {L(f+Uf+U?f+..+ U f)} converges in L if f € (I — U)(LP)
i) {feLP {L(f+Uf+U?f+..4+U""f)} converges in L’} is a closed

subspace of LP

iii) f — g belongs to the closed subspace in ii)

iv) g belongs to the closed subspace in ii)

These facts imply that f belongs to the closed subspace in ii) which finishes
the proof.

Proof of i): if f = h—Uh then 2(f+Uf+U?f+..+U" " f) = L(h—U"h) —
0 by hypothesis.

Proof of ii): this is proved along the same lines as the case p = 2. The
hypothesis: sup{||U"|| : n > 0} < oo is needed.

Proof of iii): f—g is the weak limit of f — nik(f—l—Uf—&—UQf—l—...—l—U”k_lf) =
f — fr and we have seen that the function belongs to the range of I — U. By i)
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f— fi is in the subspace in ii). Since the weak closure of a convex set (hence that
of a linear subspace) coincides with the norm closure we see that f — g belongs
to the closed subspace in ii). Finally we prove iv) by showing that Ug = g; this
would imply that %L(g+Ug+U2g+...+Unflg) = g Vn thus completing the proof.
We have UG- (f+U f+U? f4.. U™ ) =2 (fHU f+UP f . AU f) =
an(f — U™ f) — 0 in the norm. Since the first term tends to Ug weakly and
the second term tends to g weakly we must have Ug = g.

APPENDIX: Connections with Number Theory

Let 0 < # < 1,z irrational. Define a; = [1] and T(z) = 1 — [1]. T is

the Gauss transformation defined earlier. Note that 0 < T'(z) < 1. Now let

az = [7-] since T(z) # 0. Then z = @ and = = —L . also

ai +1T aﬁ—m
T?(x) # 0 since x is irrational. Proceeding this way we get an infinite sequence
of positive integers {a,}. [If 2 is rational then 7%z = 0 for some k and we get
a finite sequence of integers {a1, as, ..., ar }.
For any finite or infinite sequence of positive numbers {¢,,} we define [t1, ta, ..., 5] =

(b1, b2, oostn2,tn1 + & with [t1] = & [ Thus [t1,t0] = (01 + £) 7 = tlj%

and so on].

Theorem
x = [a1, as, ..., an + T" ()] for each n for any = € (0,1) where a,, = [7tr]-

Lemma
[tlatQa atn] - [tla [t27 "'7tn]71}’n = 27 33

Proof of the lemma: For n = 2 [ta] ™! = ¢ and the result follows. Suppose the
result holds for n for all choices of ¢;s. Then [t1,t2, ..., tny1] = [E1, 25 ooy tne1, tn+
L) =T[t1, [ta, ot + 7171 = [t1, [tos oo tnga] 1)

tni1 tnt1

1

Proof of the theorem: for n = 1 we have [a1 + Tz] = ogay < &
Suppose the result holds for n and any irrational number x. Note that T’z is also
an irrational number. We have [a1, ag, ..., any1 + T (2)] = [a1, [ag, .., Gni1 +

T ()]~ (by the lemma)
= [a1, (Tx)~1] ( by the induction hypothesis with Tz in place of z)
= aliTr =Z.
Now we fix a positive integer N and define py = 0,p1 = 1,q0 = 1,1 =

a1, Pn = AnPp—1 + Pn—2,0n = Gnln—1 + gn—2 for 2 <n < N and py = (an +
TN2)pN_1 +pn-2,9n = (an + TN z)gn-1 + qn_2.

Theorem
[a1, a2, ...,an] = % for 1 <n < N and [ay,az,...,axy + TNz](=2) =

=k
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Proof: the identity in the first part can be stated without any reference to
the irrational number x. We start with positive numbers a1, as, ..., ay, define
Dy qn(1 < k < N) as above and prove that [a1,as, ...,a,] = % for1 <n < N.

We have [a1] = i = EL. Suppose the result holds for all choices of ajs when
1 T
n < N — 2. Then [a1,az,...,an11] = [a1,02,a3, ..., Qn_1,0n + %H] = (ﬁ)
1 1 Tn
where 7, = (an + 775 )Pn-1 + Pn—2,n = (@n + 5= 7)n—1 + gn-2. Thus 2= =
(@nt+72)Pn—14Pn—2  Pntz—pPn_1
ntl _ An41 _ Qni1PntPn—1 _ Pnti :
(an+372=)n-14+Gn-2  Gntz=-—aqn-1  OGntldntdn—1  dn41’ It remains to show
An4+1 Ap4+1
that [a1, ag,...,an +TNx] = 2.
PN-—2
. . (an—1+—2Fx—)pN_2+PN -3 PN-1+ N
The left side is 0 +“N+1T z) - = Tt =Dy,
aN-—1 an+TN= PN-2TPN-3 ql\f_l-}-{”\’_'_T]\,‘T anN
Theorem
PN-1 1 1
T — < < .
aN-1| = ¢} _; — (N-1)?

Proof: we begin by verifying that p,q,—1 — ¢gnpn—1 = (=1)""1,1 <n < N.
For n = 1 we have p,¢n_1 — gupn_1 = 1 = (—1)!7L. Suppose the identity
holds for some n < N — 1. Then pyi1qn — qni1Pn = (an+1pn +pn—1)‘1n -
(@n+1Gn + Gn-1)Pn = Pn—1Gn — @n-1Pn = —(PnGn-1 — @uPn—1) = ()" It
remains to verify that the identity holds of n = N. We have pygn_1—qNPN_1 =
{(an+TN2)pNn_1+pN_2}tan—1—{(an+TNz)gn_1+qN_2}PN_1 = PN—2qN—-1—
qN—2pN—1 = (-1)N 1

PN PN-1 (=piN-t

We now have ZX — = and Z¥ = z so ‘:L‘
qN gN—1 qNQGN —1 qN

1
gNgN-—-1"

_ PN-1
gdN-—-1

To show that gy > qn_1 just note that gy = (any + TN2)gn_1 + qv_2 >
aNqN—1 > qn—1. Finally we show that 1 < ¢ < ¢ < ... < gv-1 < qn
(so that gy—1 > N — 1 and the theorem follows from this). We have ¢,,+1 =
An19n + Gn-1 2 Gn + qn—1 > qn.

Corollary
{c" :n=1,2,..} is dense in St if ¢ € St is not a root of unity.

[ We have already proved this; what follows is an alternative proof]

Proof: let ¢ = €2™* « € [0,1). Then « is irrational. Define p, and ¢, as
above with z = a.

Dn, qn are positive integers such that ‘a — %
n

< q%. Also p,, g, — oo and

{%} Is increasing. [p2nQZn—1 — Q@2nP2n—-1 = (—1)27171 = —1and pon_1¢on_o —
_ (_1)2n—2 _ P2n _ P2n—2 __ 1 1
I2n—1P2n-2 = ( 1) = lso q2n q2n—2 q2n—192n + q2n—192n—2" Hence
P2n _ P2n—2 — q2n —42n—2 Z O]
q2n q2n—2 92nq2n—192n—2
Let (a,b) € (0,1) and N = [—*——] +1. Let = N(q2n — p2n). Clearly

x > a. We also have z < a + gan00 — pa, < b for n sufficiently large because

G2n 0 — Pan < q%. Thus any open interval (a,b) C (0,1) intersects {ka+j : k >
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1,7 € Z}. In other words {ka+j : k > 1,j € Z} is dense in [0, 1]. Now if ¢?™ €
St with 0 < ¢ < 1 then [e™ — ¢F| = |e2™ — e2miheemin| < o7 |t — (ko + )
for any integer n. We can choose k > 1 and n such that ‘eiz’rt — ck‘ < €.

[ The fact that {ka+j : k > 1,5 € Z} is dense in [0, 1] is also proved in
Measure Theory by Halmos].

We now prove ergodicity of T" under Gauss transformation.

For given positive integers ay, ag, ... let Agy 4y, 0y = {2 ag(z) = ax,1 <
k < N} where ax(x) = [T"%l(dc)} Let pp,gn,1 < n < N be defined as above

and let py = anpN-1+PN-2,9N = angn-1 + gn—2. We claim that (modulo a

set of measure 0), Ay, ap....an = [%’ %) if N is even and Ay, 4y, an =

[*{'ﬁiiﬁj,%) if N is odd. To see this let fo, a5, an(t) = [a1,0a2,...,an + t].

This is a monotone function and its range is the interval with end points % and

PNFPN-1 PN PNH+PN-1 o : .
preTe— Clearly v < antava if N is even and the reverse inequality holds

if N is even. This proves our claim. For fixed N these intervals form a partition
of [0,1) and the lengths of the intervals in the N — th partition tend to 0 as

PNHtPN—1 _ PN | _ 1 1 :
N —oo. [ oo — 2| = I Tas aw S N(2N—1)]' It follows from this

that the sets of the type Ay, as,....an generate the Borel sigma field of [0, 1). [ If
(a,b) is an open interval and w € (a,b) then we can choose N so large that the
interval around w with length W is contained in (a,b). For this N there

exist a1, ag,...,an such that w € Ay, 4, 4y since these sets form a partition
of Q. Clearly Ay, 4,.....an C (a,b). It follows that (a,b) is a union of sets of the
type Ay ,as,....an - Thus the sigma field generated by sets of the type A, 4y, an
contains all open intervals].

Ergodicity of T: We write f for fg, as.....ay (for fixed als) and A for Ay, 4y an-
The length of A is £(f(1) — f(0)). The interval {z : « < TNz < B} N A
has length +(f(8) — f(a)) (plus sign if N is even and minus sign otherwise).
This follows from the fact that z = [a1,as,...,any + T™(x)] and the conti-

nuity and strict monotonicity of f. Hence m(T~N[a,3)|A) = % =
(B —a) (qN+aq;vz§zzj)—EZ§:ﬁ)qN_1) using the fact that f(t) = m%. [ Note that

[a1,aq,...,any + t] is obtained by replacing ay by ax + ¢ in [a1,a9,...,an] =
ANPN—1+gPN-—2 _ aNpPN-—1+PN-—2t+tPN—1 _ PNH+IPN-1
aNgN-1t+gN-2 ° Hence f(t) T angN-1t+qN—2+tgN -1 (IN+th—1]'

Noting that gx—1 < gn and hence 1 < (QN+§;V}\E%IY)<EZg;Iﬂ)QN—1) < 2 we see that

3(B—a) < m(T~N[a, B)|A) < 2(5—a). Hence gm(A) < m(T~NA|A) < 2m(A)

for any Borel set A. If P denotes the Gauss measure (AP = (gyray) We
get cym(A) < P(T"NA|A) < cam(A) for suitable ¢1,c2 € (0,00) ( because
the density of P is bounded above and below). If A is invariant this gives
cam(A)P(A) < P(ANA) < eam(A)P(A). Since intervals of the type A generate
the Borel sigma field we can replace A by any Borel set. [ This requires the
7 — A theorem. (c.f. Theorem 3.2 of Probability and Measure By Billingsley)].
If P(A) > 0 then m(A) > 0 and we can take A = A€ to get P(A°) = 0.
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Corollary:
(a1 (2)as(@)-(an 1MHH1

all z € (0,1).
Remark: the limit is called Khinchine’s constant. Is it rational or irrational?
Algebraic or transcendental? The answers are not known!

Proof: let f(z) = lnai(x). Then f(T™(z)) = lna,yi(x) and the ergodic

1 Zlnaj(x) /1na1(l’)dp(x)

theorem gives (ay(x)ag(x)...(an(x))/™ = e =1 e

ln[”]dP(x)
e/ ( here [¢] is the greatest integer not exceeding t). Now / In[1]dP(z)

1/m

o0 o0
%%/ mede = > B3 n(l+ ) — In(1+ 255)] = Zﬁw
m=1 1/(m+1) m=1
m%m) This completes the proof.

Remark: as a further application of ergodic theory to number theory it can

PN-1 _ w2
~_i| T 6In(2)

be shown that %hl )at — a.e..

Theorem
m{z € [0,1) : T"(z) < a} — P([0,a]) for all a.

[ Equivalently [ f(T™)dm — [ fdP for every bounded continuous function

£ on [0,1)]

Proof: this requires several steps. We first prove that 7' is a mixing trans-
formation in the sense P(T~"AN B) — P(A)P(B) for any two sets A, B € F.
[ This is stronger than ergodicity; by taking B = A where A is invariant we see
that mixing implies ergodicity]. To prove that T is mixing we prove that the
following 0—1 law holds: let G,, = 0{an, @n+1,...} where an (z) is the n—th inte-

ger in the continued fraction expansion of x. Let G, = ﬂ Gy- Then for every

A set in G, we have P(A) = 0 orl. For this note that A 6 gn for each n. Fix n.
There exists a set B in the Borel sigma field of R* such that A = T~"B (why?).
Hence P(A) = P(T~"(B)) = P(B) < 2P(T-NB|Ax) ( by the third last line
in the proof of ergodicity of T'). Thus P(A) < 2P(A|Ay). Suppose P(A4) > 0.
Then the inequality P(A)P(Ay) < 2P(ANAy) for all intervals of the type Ay
shows that P(A)P(B) < 2P(AN B) for all A and B. Taking B = A° we get
P(B¢) = 0 or P(A) = 1. This finishes the proof of the fact that G is trivial
with respect to P. Now let Y,, = P(A|G,,) — P(A) where A€ F is arbitrary. By
Martingale Convergence Theorem it follows that Y,, — P(A|Gx) — P(A) =0
almost surely and in L' since A is independent of Goo. For any B€ F we have
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T~"B € G, and hence / Y, dP(= P(ANT~™(B)) — P(A)P(T~™(B))) — 0
T-(B)
which says P(ANT"(B)) — P(A)P(B) — 0. Thus T is mixing. To complete
the proof we note that m{z € [0,1) : T"(x) < a} = / In(2)(1 + z)dP(x)
T-mA

where A = [0,a]. It suffices to show that / f(z)dP(z) — P(A)/fdP for

any bounded measurable function f. [ Because In(2)(1 4 z) is bounded and
measurable and / In(2)(1 + x)dP = 1]. By simple function approximation it

suffices to prove this when f is the indicator function of a measurable set B. We
have to show that P(BNT~"(A)) — P(A)P(B) which is precisely the statement
that T' is mixing.

Remark
The following general result follows from above arguments:

Theorem
Let (2, P, F,T) be a DS. Let G,, be the sigma field {T~"(A) : A € F}. Then

Gny1 C Gy, for all n. If the sigma field G = ﬂ Gy, is trivial ( in the sense every

n=1
set in this sigma field has probability 0 or 1 then 7" is mixing.
Details of the proof are left to the reader.

Further properties of continued fraction expansions:
and ‘w —bev) — L TUsing the
N IN{ =4 antan—1)

PN4+TmwPN-—1
dN+T"wPN -1

TN
fact that ayy1(w) = [T%] we get ayi1 < ﬁ < ant1 + 1 and hence
L f and L > L
IN(zAan+an—1) — IN{entrantan—1) IN{Foanv+an—1) IN{{ant1+Dan+an—1)

1 .
gn{an+1+gn)” Thus

that

’log pN(w)‘}’qN(w)‘ < 21\,1,2. For N =1 ‘log piN(w)“/’qN(w) = |log{wai(w)}| =
llog{w[L]}| = (log{w[L1]})~!. Considering the cases w > 1/2 and w < 1/2
we can see easily that the inequality holds in this case. From the definition
of the sequences {p,},{qn} we see that p, > 2n=2/2 ¢ > 2(0=2/2(p =

We have w =

‘w —_bv|l<c 1 We now show

1
<
gn{gn+1+an) 4N | = dN{anii1an+an_1)

2,3,...). It follows, by induction, that ‘m - 1‘ < 2NLEI(n =2,3,..). |
w _ 1 1 1
@ — 1 =l = v )/an )] st < TN omrian Tan ) PR@) /AN (@)

1
{anyjfian+an—1) PN

< QN)?,\@- [ Indeed it is easy to check that [t — 1| < £ =

1 1 V2 . :
@ = IPIOEETEIe EOTER el < sn=r. This gives

‘log PN () an (@)

24



[logt| < € ( : consider the cases t < 1 and ¢ > 1 separately). Here we take

€= ﬁ We now use the inequality |log

. v
PN (w)/qn (w) S oN-1_./3 to prove

the following

Theorem )
%logqN — 127{@ a.s..
N
Proof: claim: (%N = H[ak,ak+1,...,aN}. For this we first prove that
k=1
(W) = gn(Tw). If we denote ¢, (Tw) by r,(w) we get 7, (W) = an(Tw)Gn—1(Tw)+
(Tw) = apy1(W)rp—1(w)+r,—2(w). We also have p,1(w) = ant1(w)pn(w)+
Pn—1(w). An inspection of these equations makes it clear that the equation
(w) = ¢n(Tw) holds for all n provided it holds for n = 0 and 1. Since
(w) = ¢u(Tw) =1for n =1 and pyy1(w) = ¢, (Tw) = (12( ) for n =1 we
have finished the proof of p,1(w) = ¢,(Tw). It follows that H N1k (T )

qn+1-k(TF1w)

is a telescopic product and its value is But the product here is nothing

an (w)

but H [ak, ak+1, ..., an] and so we have proved the claim. Using the inequality
k=1

‘log pN(wﬁqN(w)‘ < 21\/7\1/5,\/5 with w changed to 7%~ !(w) we get

N
[log(T*~1w) — log[ak, a1, ..., an]| < ﬁ Now +loggn = —+ Zlog[ak,akH, .
N k=1
-+ Z log TF 1 (w)+ay where ay = —+ Z h - By the Ergodic The-
, 1
orem the first term converges to —@/bg xﬁd:c = 10};2/10g(1 +z)ldx |

0
Note that |logz|log(1+ ) < x|logz| — 0 as z — 0 and logzlog(l +1z) — 0 as
1

x — 1]. Expanding log(1+x) as x —22/2+23/3+... we get logQ/logxﬁdx =
0

2 .
10;*2 - ++.]= Tologz- Since ayn, — 0 we can conclude that +loggy —
2
s
12log2°
Theorem ,
1 Pn(w) ™
= log wfm’ —Glogz S M — 00.
Proof' recall that ———— < |w — 2% | < —L__ Hence % log [w — Pn(w) <
gv{an+1tan} an ININ+1 n
L ~lo
08 ‘ZNqN+'
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2
= —%logqn—%logqg\;ﬂ — —617;? and %log ‘w — | 2 = log

1 1 w2
1 — .
n log 2qNgN+1 6log 2

>
an{anv+itan} =

_ Pn(w)

7‘,2
) ‘ < "l 5t3] for n sufficiently large. Thus the rational

Remark: ‘w

numbers z "((:g converge to w exponentially fast.

[ END OF APPENDIX]
Mixing transformations

Let (2, F, P,T) be a dynamical system. We say T is mizing if P(T~™(A) N
B) — P(A)P(B) as n — oo for any two measurable sets A and B. We say T

is weakly mizing if Z |P(T~*(A) N B) — P(A)P(B)| — 0 as n — oo for any

k=1
two measurable sets A and B.

Remark: ’mixing’ is also called ’strong-mixing’.

Theorem .
a) T is ergodic iff Z P(T~*(A)NB) — P(A)P(B) for any two measurable
k=1
sets A and B.

b) Weak mixing implies ergodic

¢) Mixing implies weak mixing

If any of the properties above hold for A and B in a generating field they
hold for all A and B.

Proof: for the ’if’ part of a) take A to be an invariant set and B = A. This
gives P(A) = P?(A) and hence T is ergodic. Now suppose T is ergodic. By the

n
Ergodic Theorem %ZIA(T]“(QS)) — /IAdP = P(A) a.e. and in L. Hence
k=1

/ LN " 1u(T*(2))dP — P(A)P(B) and the left side is 2> P(T~*(A) N B).
5 k=1 k=1
This proves a).

b) is obvious from a).

c) is elementary.

The last part of the theorem is proved by straightforward arguments using
that fact that if Fy is a field that generates F then, given A € F and € > 0

there exists B € Fp such that P(AAB) < e. The details are left to the
reader.
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Theorem

a) T is ergodic iff 2>~ < U*f, g >—< f,1><1,9> for all f,g € L?
k=1
where Uf = foT and <, > is the inner product in L2

b) T is weak mixing iff LY " [<U"f,g> - < f,1><1,9>| — 0 for all

k=1
fgelL?
iff LN |<UFf f>—<f1><1,f>|—0forall feL?
k=1
g 1 - k 2 9
lff;Z|<U ff>—<fl><lf>"—0forall feL
k=1

¢) T is mixing iff < U¥f,g >—< f, 1 >< 1,9 > for all f,g € L?
iff <UFf f>—<f1><1,f>forall felL?

Proof: ’if’ part of a) follows by taking f and g to be indicators. If T is
ergodic then

n n
%Z Ukf —< f,1 >in L'. Multiply by ¢ and integrate to get %Z <
k=1 k=1
Ukf,g>—< f1><1,9>.

Next we show that T is weakmixingiff%Z |< Ukfg>—< f1><1,9g>|—
k=1
0 for all f,g € L?.

n
If T is weak mixing then %Z }< Ukf,g>—< f,1><1,g >| — 0 when-
k=1
ever f and g are indicators. It follows easily that the same is true when f and g

n
are simple functions. The general case follow from the estimate % Z |< Ukf,g>—< f,1><1,g>| <

k=1
n

%Z[&Q +e?] =2e%if || f||, < e and ||g||, < e. The converse part is trivial.

k=1
Now suppose this property holds when f = g. To prove that it holds for
n

all fand glet My ={ge L?: LY |<Urfg>—<f1><1,9>|— 0}.
k=1

Tt is easy to see (using triangle inequality as in the proof of b)) that this is a

closed subspace of L?. Note that 1 € My and f € My (by hypothesis). Also

g € My = Ug € My. Let h € My. But this implies < U*f,h > — < f,1 ><

1,h >= 0 for all k [ because U*f € M; and 1 € My] and so h € M; by

definition of My. Thus h € Mjﬂ- N My = {0}. This proves that M; = L? and so

LN |<Urfg> - < fi1><1,g>|—0Vfge L2
k=1
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n
If {a, } is a bounded sequence of real (or complex) numbers then 1 Z lax| —
k=1

0iff Z lag|® — 0. [ See Appendix below]. This completes b) and ¢) is proved

k=1
similarly.

Remark: a m.p.t. T may be ergodic without T2 being so: let Q = {—1,1}
with the power set as the sigma filed and the uniform measure P. Let T'(1) = —1
and T(—1) = 1. T is clearly ergodic but {1} is an invariant set for 72 with
measure .

Definition: a m.p.t. is totally ergodic if T™ is ergodic for n = 1,2, ....
Theorem
A weak mixing transformation is totally ergodic.

n—1
Proof: given: + Z |P(T~*(A)n B) — P(A)P(B)| — 0asn — oo. If m € N
h=0 m—1
and T~™(A) = A then we get Z |P(T=*(A)n A) — P(A)P(A)| = 0. [ Split
k=0

the sumover 0 < k < ninto 0 < k < m,m < k < 2m,... taking n to be a
multiple of m]. In particular P(T~°(A)NA)— P(A)P(A) = 0so P(A) = P?(A).

Example: let « be an irrational number in (0,1) and define T on [0, 1) with
the Lebesgue measure by T = 2+ amod(1). Then T is totally ergodic but not
weak mixing.

We already know that 7"z = x + namod(1) is ergodic. The fact that T is
not weak mixing will be proved later. [ See the remark after the first theorem
that follows the appendix below].

APPENDIX
A THEOREM ON CESARO CONVERGENCE

Theorem
Let {a,,} C R bebounded and 1 < p < co. Then the following are equivalent:

a) %Z lax| — 0
k=1

b) there exists A C N such that lim @, =0 and w — 0 as

n¢A,n— oo
n — oo

n
) > anl’ — 0
k=1
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Proof: it suffices to show that a) and b) are equivalent. Suppose 1 Z lax| —
k=1
0. Fork=1,2,..let Iy = {n > 1:a,| > +}. Claim: M —0asn — o0

for each k. Indeed, this follows from the inequality - Z la;| > M
j=1
There exist integers ng < nq < ... such that n > ny implies M < k%ﬂ
Let I = U{Ik+1 N [ng,ner1)}. Let ng < n < ngpr. Then TN [1,n] C {Ix N
k=0

[L,ng]} U{lke1 N[L,n]}. [Let m € IN[l,n]. Then m € I,41 N [ny,npp1)
for some 7. Since n, < m < n < ngyy we have r < k. If r = k then m €
Iy Nnene) = I N[Ln]. fr <kthenr+1<kandm € I41 C Ij.
Remains to show that m < ng. But m < nrﬂ < nkso we are done|. Hence

{m[1 < #{fkﬂ[l nil} 4 #{IH;ﬂ[l ml} o1 + k:+1 < k + k+1 if n > ng. We

have proved that #{107[0")} 0 as n — oo. Ifn >ng andn ¢ I then n ¢ Ijyq
(if n >n, andn € Ik+1 then there exists p > k such that n, <n < n,4; and
n € 1 C Ipprson € I Nnp,nppry C I). Thus |a,| < k%rl for n > ny,
n ¢ I completing the proof of a) implies b). For the converse part let |a,| < C
and let € > 0. There exists n, such that |a,| < e if n > n. and n ¢ I. Also

there exists m. such that W < € if n > me. For n > max{n,,m.} we
n—1
have L Z lak| < e+ €C.
k=0
END OF APPENDIX
Theorem

Let (Q,F,P,T) be a DS. Then the following are equivalent:
1) T is weak mixing

2) T'x T is ergodic

3)T x T is weak mixing

Proof: 1) implies 3): it suffices to show that there is a set S C N such that
#E0Ln) 1 and lim (Px P)((TxT)~"(Ax B)N(Cx D)) — P(A)P(B)P(C)P(D)
for all measurable sets A, B,C, D. By 1) there exist sets S1, 52 C N such that
#(Si+[1f’l]) — 1(i=1,2) and lirg P(T-"AxB) — P(A)P(B) and lirg P(T—"Cx

nesSy nesS:
D)) — P(C)P(D). But (Px P)(TxT)™(Ax B)N(C x D)) =P(T ™A x
B)P(T~"C x D)). To complete the proof of 1) implies 3) we only have to take
S =51 NS, [ Note that £E0MLnl) < #SI0MLR) | #S200n) ),

3) certainly implies 2). We now prove that 2) implies 1). Consider % Z T-*AN
k=1

B) — P(A)P(B)}*
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=1 i T=*ANB)+ P?(A)P*(B) — {2 i P(T~*AN B)}P(A)P(B)}.
k=1

In the last term we write fZP T ANB) = %Z(PxP)((TxT)‘k(AxQ)ﬁ

(BxQ) — P(A)P(B). Also 1 ZP2 T-*ANB) = %zn:(PxP)((TxT)‘k(Ax

A)N (B x B)) — P%(A)P%(B). Hence + Z{P T-*AnB)— P(A)P(B)}? —

P2(A)P?(B) + P?(A)P*(B) — 2P? (A)PZ( ) = 0. This completes the proof.
We now study properties of an ergodic m.p. transformation 7" related to the
spectrum of the operator U : L? — L? defined by U f(w) = f(T(w)). In this
discussion we take the scalar field to be the field of complex numbers.
An eigen function for T' with eigen value A is a function f in L?\{0} such
that foT = Af. In other words it is eigen function for the operator U.

Lemma
A =1 and |f| is a constant (a.e.)

Proof: taking L? norms in f o T = A\f we get |\| = 1. Hence |f| = |\f|
|foT|=|f|oT. Thus |f] is invariant, hence constant a.e..

Lemma
Eigen functions corresponding to different eigen values are orthogonal.

Proof: this is true for any linear isometry from H into itself: Uf; =

ML, Ufe = Xafo, fr # 0,fa # 0,0 # A2 =< fi,fo >=< Ufi,Ufa >=
Mo < fi, fa > =< f1, f2 > = 0 because A\ Ay = A—l #0.

Lemma
The eigen space corresponding to a given eigen value is one dimensional.

Proof: let Uf = Af,Ug = A\g, f # 0 and g # 0. Then ;Zg = i—’; and hence
f

+ is invariant. It follows that f = cg for some constant c. [Recall that [g] is a
constant. Hence {w : g(w) = 0} is a null set].

Lemma
Eigen values of T form a subgroup of the multiplicative group S*!

Proof: this is obvious. [Just remember that |f| is a constant for any eigen
function f. If f and g are two eigen functions then fg # 0].

Theorem

For a DS (Q,F, P,T) where T is i.m.p the following are equivalent:
a) T is weak mixing
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b) 1 is the only eigen value of the operator U on L? defined by Uf = foT
and the eigen space corresponding to this eigen value is one dimensional.

Remark: if Tz = az on S' where a is not a root of unity then 7 is ergodic,
but it is not weak mixing. Indeed U f = af where f(z) = z for all z.

The proof requires the following theorem from Functional Analysis:

Theorem [ Spectral Theorem for unitary operators]
If U is a unitary operator on a complex Hilbert space H. If x € H then there

is a unique complex Borel measure 1, on S' such that < Uz, x >= /z”duac

Vn € Z. Further p is a continuous measure if U has no eigen values.

[ For the second part we refer to Taylor’s book on Functional Analysis; see
Theorem 6.5-E, p. 353]

Assuming this theorem we prove our theorem on weak mixing transforma-
tions as follows:

Proof of a) implies b): let foT = Af, f # 0. Wehave%Zk Ukf, f>—-< fil><1,f >’ —

k=1
0. We claim that |A\| = 1 and, if A # 1 then < f,1 >= 0. This follows imme-
diately from ||f o T|| = |A| || f]l ,/f oT = )\/f and 7" is m.p.. Suppose A # 1.

Then |[<U*f,f>— < fi1><1,f>|=<ff> forallkso<f f>=0,a
contradiction. If A =1 then f is a constant since f is an invariant function and
T is ergodic.

n
b) implies a): we have to prove that % Z ’< Ukg,g>—<g,1><1,g >‘2 —
k=1
0forall g e L2 Let f =g— [gso< f,1 >=0. In this case we show that

%Z |< UFF, f >’2 — 0. Asimplecalculationshowsthat%Z |< Ukf, f >|2 =

k=1 k=1
n

%Z |< Ukg,g>—<g,1><1,g >‘2 and the proof would be complete. By

k=1
k
//\ dyiy

onal to the eigen functions of U it follows that u, is a continuous measure.
2
/ )\kdu — 0 for any continuous measure ; on S?'.
For this we may suppose that p is a continuous positive measure. By Fubini’s
n 2 n n
Theorem 2 /)\kdu =1 (/)\kdu)(/)\_kdu) = //l > AR (dpx
k=1 k=1
n
dp)(\, 7). Now for A # 7 we have %ZAkT’j =
k=1

2
— 0. Since f is orthog-

n
the Spectral Theorem this reduces to % Z
k=1

n
We now prove that %Z
k=1

k=1
l (%)n+17%

i v e 0. Since
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2
— 0. [

(ux p){(\7) € St x St : X = 7} = 0 we see that %Z
k=1

/ Nedp

n

1 Z Ner—Fk

k=1

Dominated Convergence Theorem can be applied because <1].

Theorem
Conditions a) and b) of previous theorem are also equivalent to:
¢) T x T is ergodic on (2, F, P) x (2, F, P)

Proof: (it is trivial to check that T' x T is m.p.). Let T be weak mixing.
To prove ¢) it suffices to show that (P x P)((T x T) (A x B)N (C x D)) 5
P(A)P(B)P(C)P(D) for all A,B,C,D € F. ( < stands for Cesaro conver-
gence). This is true by an immediate application of the theorem on Cesaro

convergence in the Appendix above.
[If A C Nsuch that lim J|a, —a|]=0and lim |b, — b =0 where

n¢A,n—oo n¢A,n—oo
card{AN{1,2,...,n})

- — 0 as n — oo then lim  |apb, —ab] = 0. Of course

n¢A,n—oo

card{An{12....n}) _, () also has this property,

union of two sets with the property
so the same set A can be used for {a,} and {b,}].

Now suppose c) holds. Let Uf = Af,f # 0. Then F(z,y) = f(z)f(y)
defines an eigen function of U x U with eigen value 1 (i.e. an invariant function).

(U xU)F(@.y) = F(Tw, Ty) = [(T(2)[(Ty) = \f(@)Af(y) = F(x,y) because
[A| = 1]. Hence f(x)f(y) is a.e. constant, say ¢. Now Fubini’s Theorem implies

that for almost all y, hence for at least one y, f(z)f(y) = ¢. Thus f is a constant
and hence A = 1. We have proved that b) holds. The proof is complete.

Example: The rotation Tz = az ( a not a root of unity) on S* is ergodic but
not weak mixing. This is clear because a is an eigen value other than 1 ( with
the eigen function f(z) = z).

It also follows from the equivalence of a) and c) that T' x T is not ergodic
even though T is!

Theorem
Let (Q,F, P,T) be an dynamical system with T ergodic and (', F', P',T")

be another dynamical system with 7" also ergodic. Let Uf = f o T on L?(P)
and Vg =goT" on L?(P"). If T x T" is ergodic then U and V have no common
eigen values other than 1.

Proof: if Uf = Af and Vg=Ag (A # 1, f #0,9 #0) then (UXV)F(x,y) =

F(z,y) where F(z,y) = f(x)g(y). If T x T" is ergodic it would follow that
F' is constant. But then f and g are constants by Fubini’s Theorem and this
contradicts the fact A # 1. Thus T x T" not is ergodic.
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Remark: the converse of this is also true. We omit the proof.

Application to Markov Chain Theory

Let P = ((pi;)) be an N x N stochastic matrix. Let 7 be a probability
vector with 7P = P. Let S = {1,2..., N}. There exists a probability measure @
on ) =85 xS x ... with the sigma field F generated by cylinder sets such that
Q{w w1 = d1,wy = d2,...,W; = 45} = T\ Piyin, - Pij_yi;- Let T be the shift
map (Tw)n = Wn+1-

Let g;; = hm L Z p;j - To see that this limit exists for all ¢ and j we first

apply Birkhoff’s ergodlc theorem with f = Ig(B C {1,2,...,N}) to see that

n—1
nILH;O% ZIT_k(B) exists a.e..and in L'. If A C {1,2,...,N} we can integrate
- n—1
over A to see that lim %L Z Q(T~%(B) N A) exists. Now take A = {w : wy =
n—oo
h=0 n—1
i}, B = {w : wp = j} to conclude that lim %ZQ{W fwo = wg = j) =
n—oo
n—1 h=0
nILH;O % Z pl(?)m exists. We assume that m; > 0 for each i to conclude that g;;

k=0
exists for all ¢ and j. [Those states ¢ with m; = 0 are irrelevant to the Markov
chain].

Theorem

T is m.p.. on (Q,F,Q). Also the following are equivalent:
a) T is ergodic

b) P is irreducible

c) ¢;; is independent of ¢

d) ¢;; > 0 for all ¢ and j

Proof:
T is ergodic iff
n—1
% Z Q{W LW = 7;1’(*)2 = i27 ey We = irawk-‘rl = j17 -.-70Jk;+m = jm} -
k=0
Q{w : w1 = i1, wy = d9y ey wyr = 4 }Q{W : WEt1 = J1, ooy Whtm = Jm ) fOr
n—1
all choices of i's and j's. Note also that the limit of % Z Q{w 1wy = i1, ws =
k=0

12y ey Wp = Gy Wkl = J1, oy Whtm = Jm} a8 n — oo always exists. [ The case
r =m = 1 was already discussed above and the limit in this case is g;, ;, .
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These facts follow easily from the fact that cylinder sets generate F. If T is

ergodic then ¢;; = 7;.[ Indeed the limit is /E(IB |Z)/m; where T is the invariant

A
sigma field (which is trivial, in view of ergodicity). This says that the limit is
UBRMA) _ T = 1. The matrix M = ((g;;)) is a stochastic matrix such that

T
n—1

MP = PM = M and M? = M. [ Recall that M = lim Z P* by definition.

n—oo™
k=0

n—1
To prove the last relation note that q E qaqy = E gy lim % E pl(f)
n—oo
=0 k=

n—1 N n—1
= nlgg()% Z Z 1lsz = nlirgo% Zmij = m;;. | We used the fact that
k=0 1=0 k=0
MPF = M for e ch k.
n—1 n—1
1 k _ 1 ko
We also have mM = 77711520 kZOP = nlirréo kzoﬁ = 7w since P T

for each k. We now prove a) implies b), i.e. if P is not irreducible then T is
not ergodic. Let A = {w : wg € C} where C is a proper closed set of states.
Then 0 < Q(A) < 1. Since C is closed Q(A\T~*(A4)) = 0. Since T is m.p.
this implies Q(AAT*(A)) = 0. This implies that T is not ergodic. Next
we prove b) implies d). Let P be irreducible. Let C' = {j : ¢;; > 0} with ¢
fixed. This is a closed set. Indeed if ¢;; > 0 and ¢;; = 0 then ¢ cannot lead to
J 0= qix > qijpjr (because M = M P) which implies p;; = 0. By hypothesis
C = S. This proves b) implies d). Let us prove that d) implies c¢). Consider the
system of equations Z%‘jtj =t;,i € S. Let m =mazx{t; :i € S}t Ift; <m
J
then t, = qu]t < m for all k (since t; < m for all j,t; < m and ¢;; > 0 for

all 4, 7). Thls contradiction shows that {t;} is necessarily constant. We apply
this fact to the columns of M. Any column {q1;, g2, ..., qni} of M is a solution
of above system of equations because M2 = M. Hence each column of M is
a constant. This means that g;; is independent of i. Now suppose c¢) holds.
n—1
To prove that T' is ergodic we have to show that %Z Qlw : wy = i1, ws =
k=0
ig, ey W = Z'r,wk+1 = jl, ey Whtm = ]m} —
Q{w : w1 = i1, wy = G9y ey wyr = 4 JQ{W : WEt1 = J1, oo, Whtm = Jm ) fOr
all choices of i’s and j's. We have Q{w : w1 = i1,ws = 2, ..., Wy = bp, W1 =

; = G} = i PiviaPisi (k—r) g for k>
J1y s Whktm = Imy = 7Tl1p1112p2223 pz, 117plrj1 pﬂ132p32]3 p.]m*l]m or r.
n—1
1 . . . . . . .
Thus ;- E Qfw : wy = d1,w2 = g, e, Wp = Gy, Wil = J1s ooy Whpm = Jm} =
k=0

1
PiyiaPisig---Pir_1ip 5y § 'Lle leJZ Pjr—15m
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> PiviaDizia-Pis 1is Qi 1y P Pia-Pis i Sice gi,j, does not depend on 4,
the limit is Q{w : w1 = i1, was =2, ...,wr = i, }Q{W : Wkt1 = J1, e, Whtm = Jm }
where we used the fact that ¢;; = Q{w : wr41 = j}. [ Since ¢;; does not depend
on ¢ it must be 7; and each projection w — wy, has distribution (7;)]. We have
proved that T is ergodic. Thus a) implies b) implies d) implies c¢) implies a).

Remark: the four conditions above are also equivalent to the following two
conditions:

e) Pz = x has at most one solution upto a constant factor

f) P = x has at most one solution upto a constant factor

We leave the details to the reader.

Theorem

With above notations 7T is mixing iff P is irreducible and aperiodic.
Proof: note that T is mixing iff

lim Q{w : w1 =41, wa = 19, ooy Wy = Gy Wnt1 = J1, oo, Wb = Jm }

n—oo
= Q{w Pwy =, We = G2, e, W = ZT}Q{w PWnptl = jla"'?wn+m = ]m} for
all choices of i’s and j's. If P is irreducible and aperiodic then lim pgl) =T;
n—oo

for all j. If P is irreducible and aperiodic then previous theorem shows that
gi; > 0 for all 4, j and that ¢;; is independent of ¢.

To prove that T is mixing we have to show that Q{w : w; = i1,ws =
ig, ey Wy = ir,wk+1 = jl, ey Whtm = ]m} —

Q{w : w1 = i1, ws = dg, .y wr = 6, }Q{W T Wkt1 = 1y s Whtm = Jm} @S
k — oo for all choices of i's and j's. We have Q{w : w1 = i1,ws = i9,...,w, =
By Wrt1 = J1y ooey Whtm = Jm} = 7ri1pi1i2pi2i3"'pikfﬂkpz(‘szr PjrPjo--Pjm—1jm 0T
E>r. Thus Q{w : w1 = i1,wa = G2, ey Wy = Gy, Wht1 = J15-e0s Whm = Jm | —
Ti1PivioPisig - Pip_1i.T5:;Pj1PjoPim_1jm — Q{w LW = il,CUQ = ig,...,wr =
i }Q{w : Wkr1 = 1, ,Wktm = Jm}. Thus T is mixing. Conversely sup-
pose T is mixing. Then Q{w : wg =i, w, = j} = Q{w : wp = i1 }Q{w : wo = j}.
g 2
aperiodic: p;.” > 0 for all n sufficiently large, so period of each state ¢ is 1;
(n)

ij

Thus m;p,;” — m;m; and so p

(n)

i

— ;. This implies that P is irreducible and

irreducibility is obvious since p;.” > 0 for n sufficiently large.

Skew products

Let (Q,F,P,T) be a dynamical system. Suppose for each w € Q there is a
m.p.t. S, on a probability space (2, F’, P') such that the map (w,w’) — S, (w')
is measurable from (2 x @', F x F’) into (', F"). The map 7: @ x Q' — Q x
defined by 7(w,w") = (Tw, S, (w")) is called the skew product of T and {Sy, }ueq-
A special case: let ' be a compact topological group and S, (v') = f(w)w’
where f: Q — Q' is a given measurable function. If E is a Borel set in €’ then
A= {(a,b) € ¥ xQ : ab € E} is a Borel set and {(w,w’) : S,(w') € E} =
{(w, ") : (f(w),w") € A} € F x F' by measurability of f. Hence 7 is a skew
product if we take P’ to be the Haar measure.

Theorem
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Tism.p. on (Q x Q' F x F', P x P).
Proof: it suffices to show that (Px P')(t71(Ax B)) = (PxP')(AxB)if A €

Fand B € .7:/. The left side is /IT—l(AXB)d<PXP/) = /ITfl(A)/I{w’:Sw(w’)GB}dP/(w/)de) =
/IT—l(A)P/(B)dP(CU) = P(T7'(A))P'(B) = (P x P")(A x B).
Ergodic theorem for flows:
Theorem
A
Let {T};}1>0 be aflow on (Q, F, P). Then A}Enm%/f(Tt(w))d?ﬁ exists a.e. and
0

in L' for every f € L'. Also the limit exists in L? if f € LP where 1 < p < oo.

A [A]+1 [a] (B+1) (k+1)
Proof: we have [ f(Tiw)dt+ f(Tiw)dt = Z f(Tw)dt. Also f(Tw))dt =
rmes [ o=y ] /
1
/f(Tt+kOJ)dt
0
1 1 A
= /f(TtTkw)dt = g(Txw) where g(w) = /f(Ttw)dt. Hence %/f(Ttw))dt =
O[A] ALt 0 0
B> o(@fw -4 [ ).

k=0 A
g is clearly measurable. If f € LP then g € LP. [ This follows by Minkowski’s
A

inequality in integral form and that fact that each T} is m.p.]. Further 4 /f(Tt (w))dt —

(A
0 uniformly as A — oo if f is bounded. Combined with LP— Ergodic The-
orem and Birkhoff ergodic theorem we can draw the following conclusions:

A
if f € LP N L>* then %/f(Ttw))dt converges in LP p = 1,2. Noting that
0

A A

A
i/ﬁ@wnﬁ—i/hﬂwﬂﬁ <gZWﬁaw»—ﬁuw»mﬁ

0 0 p
A

=%/ Ifi— foll,dt < € whenever | fi — f2f|, < € we can conclude that

0
A

%/f(Ttw))dt converges in L? if f € L? and 1 < p < co. Birkhoff’s theorem
0
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N+1
implies that % / f(T(w))dt — 0 ae. as N - o0if f € LY. [ artast...tan _ .

n

N
implies |a,| < |¢[+ (n+n—1)e for n sufficiently large, so %= — 0]. Suppose f is

[A]+1 [A]+1
non-negative and integrable. Then x / f(T(w))dt < % / f(T(w))dt — 0
A (A]

A

as A — oo. It follows that A}im %/f(Ttw))dt exists a.e. for any non-negative
—00

fin L'. Of course, the same must be true for all f in L! since the limit is finite
e.., In fact the limit is integrable by Fatou’s Lemma.

Theorem [Local ergodic theorem for flows]
Let {T}} be a flow on (Q, F, P). Then 2%/]”(Tsx)ds — f(z) ase — 0 almost

everywhere for any f € L'(P).

Proof: f/|fo|dsdP /f|fo\dP ds—/||f||1ds—2||f||1

1
oo. Hence there is anull set F in (€, F, P) such that « ¢ E implies / |f(Tsz)|ds <

oo. For any such x Lebesgue’s Theorem implies that i/f(Tst)ds — f(Tix)
for almost all ¢t € (—1,1). Fix ¢ such that %E/f(TSHx)ds — f(Tix) for almost
all z. [ This is possible by Fubini’s Theorem]. Now P{z : i/f(Tsx)ds — f(z)

ase — 0} = P{z: %/f(TSHa:)ds — f(Tix) as € — 0} because T} is measure

—&
preserving. This completes the proof.

Flow under a function:
Let (Q,F,P) be a probability space and T be an im.p.t. on it. Let

f: 9 — (0,00) be measurable with / fdP = 1. Assume that »  f(T"(w)) =
n=0

Z ) for every w. Let ' = QxR,ﬁ:{(w,m) 0< < f(w)}
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with the sigma field obtained by restricting the product of F with the Borel
sigma field of R to Q. Note that (P x m)((l) = /fdP = 1. Define T}(w,z) =

(wx+t)if —z<t<—a+ f(w)
n—1 n
(T"w,x+t— f(w) — ... — f(T" Y(w)) if —z+ Zf(Tkw) <t< —x—|—Zf(Tkw)

k=0 k=0
n—1

(T7"w,z+t+ f(T7 W) + o+ FT (W) i —2 =Y f(TFw)<t<—z— Y f(T Fw)
k=0 k=0

We call {T;} the flow built under f on T.

Theorem [Ambrose, Kakutani]

Any proper measurable flow is isomorphic to a flow built under a function.

For definition of a proper flow and a proof of the theorem we refer the reder
to the following article:

"Structure and Continuity of Measurable Flows" by Warrwn Ambrose and
Shizuo Kakutani, Duke Math. Jour., Vol. 9, No. 1, 1942. This article has also
been reprinted in Selected Papers of Shizuo Kakutani, Volume 2,Birkhauser,
1986.

Unique ergodicity:
Consider a DS (X, F, P,T) where X is a compact Hausdorff space and Then
F is the Borel sigma field.

Let M = {u € C(X)* : u is a probability measure and yoT~! = p}. This
is a compact convex set in C'(X)* with the weak™ topology. [ Compactness
follows from the fact that M is a closed subset of the closed unit ball which is
compact by Banach-Alaoglu Theorem]. By Krein-Milman Theorem M is the
closed convex hull of its extreme points.

Lemma: g € M makes T ergodic iff p is an extreme point of M.

Proof of the lemma. suppose p € M makes T ergodic. If possible let
po=tu; + (1 —tpy with 0 < ¢ < 1Lu, € M@ = 1,2) and py # pig. If
T~1(A) = A then p(A) =0 or u(A¢) = 0. In the first case p;(A) = py(A) =0
and in the second case g (A°) = py(A°) = 0 so puy(A) = py(A) = 1. Hence T
is ergodic w.r.t. pq and p, also. By Birkhoff’s Theorem we see that if £ € F

n—1 n—1
then+ Z Ip(T*z) — p(E) ae. [y and in L*(p), = ZIE(T’%) — py(E) ae.
k=0 k=0
n—1
[1] and in L'(u), and %ZIE(Tkx) — s(E) a.e. [py] and in L'(y). Thus

|

n—1

LN " I1p(T*z) — p(E)| du(z) — 0 and this implies /
k=0

0 i Ig(T*z) — w(E)| dp;(x) —
k=0
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n—1
0 for 4 = 1,2. But then there is a subsequence of % Z Ip(T*z) converging to
k=0
w(E) a.e.p;] and so u(E) = p,(E) = py(E). This is true for any measurable
set I/. This contradiction shows that p is an extreme point of M. Conversely
suppose T' is invariant but not ergodic w.r.t. pu. There is an invariant set
A such that 0 < p(A) < 1. Let py(E) = “(ﬁg)A) and py(E) = “(ﬁgf)‘).
Then ju; and p, are both probability measures. p, (T~ 1(E)) = W =

“(Til((f)mA)) = “((EQA)) = p;(F) so u; € M. Similarly py € M. We have

u n
w(E) = w(ENA) + u(ENAS) = u(A)py(E) + (A uy(E) for all E showing
that g is not an extreme point of M. [ gy = py would imply p(AN A) =
(A (A) = p(A)py(A) = 0, a contradiction].

We now prove uniform convergence in Birkhoff’s theorem under certain con-
ditions.

Definition: T is uniquely ergodic if there is a unique probability measure
under which it is invariant.

Justification of this comes from the fact that when M is a singleton, {u},
then p is necessarily an extreme point and so T is ergodic w.r.t. pu.

Theorem [Weyl]
Suppose the DS (Q, F, P,T) is uniquely ergodic where (2 is a compact met-

ric space and F is the Borel sigma field. If T and f are continuous then
n—1

n—1
% Z f(T*z) converges uniformly. Also % Z dpry, — P in weak™ topology.
k=0 k=0

n—1

Proof: we know that % Z f(Tkz) — /fdP a.e.. Suppose the convergence
k=0

is not uniform. Then we can find § > 0,n1 < ng < ... and {x;} C Q2 such

’I’Llfl ’I’Llfl

n% Z f(TFx) — /fdP > d Vil Let p, = % Z d7ry,. This sequence

that
n
k=0

k=0

of probability measures has a subsequence converging in weak* topology to a
probability measure. [Recall that C(X) is separable and hence the unit ball of
its dual is weak* metrizable]. This limiting measure belongs to M (by a direct

verification which is left to the reader) and the hypothesis implies that it must
n;—1

=3 prra - [ rap
k=0

The second part follows easily from this proof.

be P. This clearly contradicts the fact that >4 Vi.

Theorem [ A converse of Weyl’s Theorem)].

Suppose (Q, F, P,T) is a DS where ) is a compact metric space and F is the

n—1
Borel sigma field. If T is continuous and ergodic and % Z f(T*z) converges
k=0
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uniformly for every f € C(Q) then T is uniquely ergodic. The same conclu-
n—1

sion holds if we only know that some subsequence of {1 Z f(T*2)} converges
k=0
uniformly for each f € C(£).

Proof: suppose @ is a probability measure on (£, F) such that QoT~! = T.

nj—1

Suppose - Z f(T*z) — g uniformly for some {n;} 1 co. Then[ fdQ =
J k:0

njfl

f% Z f(T*2)dQ ( because Q o T~! =T). Letting j — oo we get [ fdQ =
k=0

fng._ However ergodicity of 7" w.r.t. P shows that g = [ fdP (a.e., hence
evreywhere, be continuity). It follows that [ fdQ = [¢dQ = [ [ fdPdQ =
[ fdP. Since this holds for all f € C(Q) we get P = Q, as stated.

Remark: suppose (2, F, P,T) is a DS where Q is a compact metric space
n—1

and F is the Borel sigma field. If T is continuous and + Z f(T*x) converges
k=0

uniformly to a constant for every f € C(Q2) then T is uniquely ergodic. The

n—1
same conclusion holds if we only know that some subsequence of {1 Z f(Tkz)}
k=0
converges uniformly to a constant for each f € C(Q). The proof is same as the
one above.

Example
Let a be an irrational number, Q@ = [0,1],F = borel sigma field, P =
Lebesgue measure and T(xz) = x + a(mod(1)). Suppose p is a probability

measure on € which makes T invariant. Then /em””wdu(x) = /e“”"‘”d(,u o
Tfl)(x) —_ /ei27rn(y+a)d'u(y) —_ 6i27rnoz/e7i27rnyd’u(y). Since 2™ — 1 iff n = 0
it follows that /ei%"”du(:ﬁ) = 0 for all n # 0. [ For n = 0 the integral is

n—1
1]. Tt follows that 4 = P. Thus T is uniquely ergodic. Hence % Z flz + ka)
k=0

1

converges uniformly to / f(x)dx for any continuous periodic function f with
0
period 1.
Exercise

Show that above fact remains true if f is periodic and Riemann integrable
(not necessarily continuous).
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The fact that this is true for all intervals contained in [0, 1) is called Weyl’s
Equi-distribution Theorem.
Hints: we can find continuous functions g and h such that g < f < h

1
and / (h — g) is as small as necessary. (To see this consider step functions
0

approximating f and modify them suitably on small intervals to get continuous
functions).

Existence of invariant measures

Theorem
Suppose T : © — € be continuous where €2 is a compact metric space. Let
F be the Borel sigma field. Then there exists a probability measure @ on (2, F)

such that T is m.p. and ergodic w.r.t. Q.
n—1

Proof: let P be any probability measure on (Q, F) and p,, = + Z PoT™*.

This sequence of probability measures has a subsequence, say {,unj} converglng
in weak* topology of C(X)* to a probability measure p. We claim that p o

T—! = u. It suffices to show that /f(T(a:))d,u(x) = /fdu for every continuous

n;—1
function f. Now /f ))dp(x) = lim - Z /f (T*+1(x))dP(x)

njl

—hmlz:/ka ))dP(x llml{kZO/fT’“ ))dP(x /fdP+
n;—1

[iaenarey =im (3 [t enie

= / fdu. Thus p makes T m.p.. Now the collection of all invariant probabil-

ity measures is a non-empty compact convex set. By Krein - Milman Theorem
this set has an extreme point . As seen earlier this @Q makes T ergodic.

Remark: in above theorem can we find @) such that Q << P where P is a
given probability measure?. The answer is no! Let = S, m denote normalized
arc length measure and let P be any probability measure such that P << m but
m is not absolutely continuous w.r.t. P. [ For instance P could be m restricted
to the upper half of the circle divided by 2]. Let Tz = az where a € S! is not a
root of unity. Suppose there is a probability measure @ such that ) << P and
QoT ' = (Q where Tz = az and a is not a root of unity.. Then there exists

f such that Q(FE /fdm Now /f oTdm = / fdm ( because T is i.m.p.
T(E)
w.r.t. m)
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= Q(T(E)) = QF) = /fdm for all Borel sets F so f is an invariant

1

function on (S',m). Since T is ergodic we get f = ¢ [m] for some constant

c. But then Q(F) = /fdm = c¢m(E) which implies that m << Q << P
E
contradicting the fact that m is not absolutely continuous w.r.t. P.

Theorem

Let (Q,F,P) be a probability space and T :  — Q be bijective and bi-
measurable. Suppose PoT << P and PoT~! << P. Then the following are
equivalent:

a) there exists an invariant probability measure for T which is equivalent to

@ 1
b) {1 Z f(T*(w))} converges a.e. [P] for every f € L.
k=0
Proof: a) implies b) is obvious from Birkhoft’s Ergodic Theorem For b) im-
plies a) let Q(E) = lim * Z P(T . The limit exists since = Z Ip(T*(w

exists a.e. [P], hence also in L'(P) be DCT. [ That Q is indeed a probab1hty
measure follows by Vitali-Hahn-Saks-Theorem]. By hypothesis Q << P. Also

QoT™ ! = Q. Now suppose P(A) > 0. Then P{UT”‘A} > P(A) > 0.
Since UT "A is an invariant set the definition of Q shows @ UT mA)
UT "A) > 0. If Q(A) = 0 then Q(T"(A4)) = 0 for all n 1mply1ng that

Q(U T-"A) = 0 a contradiction. We have proved that P(A) > 0 implies

Q(A) > 0 and the proof is complete.

Theorem [DOWKER|]

Let (Q,F, P) be a probability space and T : Q@ — Q be a bijective map
such that 7" and T~! are measurable. Suppose liminf P(T~"(A)) > 0 whenever
P(A) > 0 and PoT~! << P. Then there exists a probability measure p on
(Q, F) such that poT~! = pand p~ P (in the sense p << P << ). Conversely
if there exists a probability measure u on (£, F) such that poT~! =y and p~ P
then liminf P(T~"(A)) > 0 whenever P(A) > 0.

We use Banach limits in the proof. [Let M be the set of all bounded se-
quences {a,} of real numbers such that lim #te2tFn exigts considered as a
subspace of the Banach space [*° of all bounded sequences of real numbers with
the supremum norm. By Hahn Banach Theorem there exists a continuous linear
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map L : [°° — R such that ||[L|| =1 and L({a,}) = lim “-F92ttdn whenever
{an} € M. We claim that L has the following properties: L({c}) = ¢ for any
constant sequence {c}, L({a,}) = ¢ whenever a,, — ¢, liminfa, < L({a,}) <
limsupa,, for all {a,} € 1, L({ant1 — an}) = 0 for all {a,} € I*° and
L({ay,}) > 0if a,, > 0 for all n. Proofs of these facts are easy: {an+1—a,} € M
and the cesaro limit of {an41 — an} is 0. This gives L({an+1 — an}) = 0. If
an > 0 for all n and C = sup{a,, : n € N} then L({C —a,}) < ||L||C = C so
C - L{an}) <C and L({a,}) > 0. If € > 0 then there exists ng such that
an, > liminf a,, — € for all n > ng and so L({any+n — liminf a,, + €}) > 0. This
implies L({any4n}) > liminfa, —e. However L({an,+n}) = L{angtn-1}) =
... = L({a,}) and € is arbitrary so L({a,}) > liminfa,. Replacing {a,} by
{—an} we get L({a,}) < limsupay,].

Now let Q(A) = L({P(T~"(A))}. Q is a finitely additive non—negative set
function and Q(Q) = 1. Also P(A) =0 = P(T'(A)) =0 = P(T™ (A)) =
= ...50 Q(A) = 0. Note that Q(T~*(A)) = L{P(T(T~'A))} = L{P(T- "tV (A))} =
LH{P(T™(A)} = Q(A). We claim that P(A) = 0 iff Q(A) = 0. By hy-
pothesis lim inf P(T" (A)) > 0 whenever P(A) > 0. Thus P(A) > 0 implies
Q(A) = LH{P(T~"™(A))} > liminf P(T~™(A)) > 0. The claim follows.

We now construct a countably additive measure p with the same properties.
Let p(A) = inf{z Q(A,) : A, € FV¥n,AC UA”} We first observe the

following: if u(A) =0 adn € > 0 we can choose disjoint A1, As, ...sets such that
Ac UAn and ) Q(A, [ Replace {A,} by {A1, A\ A1, A5\ Ay U Ay, ...

Suppose E is the disjoint union of the sequence {E,} in F. Given € > 0 and
J > 1 there exists a sequene {A ; ,} C F such that u(Ej)+5; > Z Q(A; ) and

E; CUA],L SmceECUAjnwehave,u ZQ i >Z{“

j’n

:Zu ;) + €. Thus pu(E _Zu i) Now,u +6>ZQ
J J
for some sets A, € F with E C UA"' Since E; C U(A" N E;) we have

N N N N
Zu(Ej) XY QM) = 1Y ) = et B

n j=1 j=1

ZQ u(E) 4+ €. Since € and N are arbitrary we get Z,u ) < u(E).

1
for all E. Finally we show that poT~! = pu and p~P. We have u(T1(A)) =
inf{>  Q(An) : Ay € FYn,T7HA) C |JAn} = inf{d_Q(T'4,) : A, € F

Vo, T=H(A) C | JT7'(An)}

Hence u is a measure. Note that u(FE) < Q(F) + Q(0) + Q((Z)) +..=Q(F
)
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=inf{> Q(A,): A, € FVn, A C | JAn} = u(A). Clearly u(A) < Q(A) =

0 whenever P(A) = 0. Now suppose P(A) > 0. If possible let u(A) = 0.
There exist disjoint measurable sets A; ,, (j,n > 1) such that A C U A;, and
J

o0
ZQ(Ajm) < 57 for all n. Without loss of generalty we may assume that
j=1

Ajn,j = 1,2,... are disjoint. Choose k, such that Z P(A;,) < Pa) [

=
e} ! kn—1
Possible because ZP<AJ»”) < 1 and P(A) > 0]. Let C, = U A, and
Jj=1 j=1
D, = U Ajn. Then A\UD,L = ﬂ(A\Dn) C ﬂC’n = C (say) so A C
J=kn n n n

UD” UC and P(A) < ZP(D”> + P(C) However since Z P(Aj,) < Pg(f)
n n j=kn

the definition of D,, gives P(D,) < PS(,‘?) so P(A) < P(A)) 4+ P(C) =

n

1P(A) + P(C) and P(C) > 1P(A) > 0. This implies Q(C) > 0. However

kn—1 %)
QIC)< > Q(Ajn) £ Q(Ajn) < 5 and 1 is arbitrary so Q(C) = 0. This
j=1 j=1
contradiction completes the proof.
The converse part is easy: since Q(E) — 0 as P(E) — 0 we see that
liminf P(T~"(A)) = 0 implies liminf Q(T~"(A)) = 0 which gives Q(A4) = 0,
hence P(A) = 0.

1
2

Remark: the condition P o T~! << P can be replaced by the weaker con-
dition that lim P(T~"(A)) exists and equals 0 whenever P(A) = 0. Indeed
Q(A) = L({P(T~™(A))} = 0 in this case and the proof above works.

Converse part is easy: P(A) = 0 = u(A) = 0 = pu(T7'4) = 0 =
P(T7'A)=0s0o PoT ! << P. If P(A) > 0 and liminf P(T~"(A)) = 0 then
there exists n; T oo such that P(T~"(A)) — 0 which implies p(7-" (A4)) — 0.
This is a contradiction because p(T~" (A)) = u(A) > 0 for all j.

Remark: Dowker has proved that the condition lim inf P(T~"(A)) > 0 when-
ever P(A) > 0 can be replaced by the condition lim sup P(T~"(A)) > 0 when-
ever P(A) >0 .

Theorem [HAJIAN, KAKUTANTI]

Let (2, F, P) be a probability space and T : Q& — Q be bijective and bi-
measurable. Then T has an invariant measure equivalent to P iff the measures
PoT ™ n=1,2,... are uniformly absolutely continuous w.r.t. P
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We do not prove this theorem here. For a proof see Theorem 3.18 of Intro-
duction to Ergodic Theory by N. A. Friedman. For more information on this
topic see: "The Problem of Finite Invariant Measures" by Daniel Glasscock.

Theorem [Ergodic Decomposition]

Let 2 be a compact metric space, T : 2 — € continuous and P a Borel
probability measure such that PoT~! = P. Then there exist Borel probability
measures P,,,w €  such that

1) /fdP: /(/fde)dP(w) for all f € L(P)
Zka —>/fdP a.e. [P] for all f € L'(P)

3) for each w €  the map T is ergodic w.r.t. P, for each w € Q.

Thus any continuous m.p. transformation is a 'mixture’ of ergodic transfor-
mations.

We shall not prove this theorem here.

ENTROPY

Let (Q,F,P,T) be a dynamical system. If A is a finite sub-sigma field of
F then there is a finite partition of Q2 by sets in F such that the sets in the
partition generate 4. In view of this we use symbols like A, B etc for finite
sigma fields as well as ﬁnite partitions.

Definition: h(A Z P(A;)log P(A;) where A is the partition { Ay, As, ...

[We use the convention 0 10g 0 = 0]. This is called the entropy of A. It is measure
of the information contained in the partition.

If two partitions generate the same finite sigma field then they
differ only be a permutation. Hence entropy of a partition depends

only on the field generated by it.
k

aAk}~

We can also call — Z p; log p; the entropy of the probability vector {p1, p2, ..., Dk }-

i=1
Theorem

1) h(A) >0

2) h(A)=0 iff A is trivial in the sense every set in it has probability 0 or 1.

Z i log + + = logk.

Proof: 1) and 2) are obvious. For 3) we use Jensen s inequality. Since
k

logarithm is concave we have —ZP i) log P(A ZP ) log 7 1) <

i=1
logz P(A

= log k.
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Exercise

Trying to define a continuous version of entropy define h(f) = — / flog f
for a density function f. Show that h(f) may be 0 or oo! If ¢ is another density
function show that —/f log 4 2 >0.

o0
[ 1(0,1) is one counterexample. Zajj(j,.j—&-l) where a; = W gives the
j=1
other counterexample. A suitable application of Jensen’s inequality gives the
last part).

Let h(A |B) = ZZP (A;N Bj)log P(A;|B;) if A={Ay, Ay, ..., A} and
=1 j=1
B ={B1,Ba, ..., Bk }. In this definition we ignore the terms with P(B;) = 0.
Equivalently we define P(A; N B;)log P(A;|B;) = 0 when P( i) = 0.
Let us first observe that h(A |B) > 0 since P(A4;|B;) <

Theorem

(A\/ B[C) = h(AIC) + h(B|A\/ C)
A\/ B) = h(A) + h(B|.A)

AlC) < h(BIC)if ACB

)< h(B)if AC B

1) h

2) h(

) h(

) h(A

) h(A|B) < h(AlC) if C C B
) W

) W

) h(

3
4
)
6) h(AB) < h(A)

A\/ BIC) < h(A[C) + h(B|C)
A\/ B) < h(A) + h(B)

7
8

9) h(T—'A|T~'B) = h(A|B)
10) h(T~1(A)) = h(A)

Proof: note that h(A |B) = Z Zp (A;NB;)log P(A;|B;j) = h(A ) when
1=15=1
B is trivial. Thus all the even numbered properties follow from the previous ones.

Proof of 1): we have h(A\/B|C) ZZZP ((A;n B, NCj)log P(A; N

i=1 j=1r=1
k

B,|Cj) ==Y

i=17

p
> P((A; N B, N Cy)log[P(Ai| B, N C;)P(B, N C4|Cy)]

1r=1

HNgE

<.

k. m
i=1 j=1r

k m p
ZZZP A; N B, NCj)log P(B, NC;|Cy)

i=1 j=1r=1

M@

P A NB,N Cj) IOgP(Az|BT n CJ)

Il
-
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= h(A[B\/C) + h(BIC). We get 1) by switching A and B
If AC B then A\/B =B and 1) gives h(BIC) = h(A[C) + h(BJA\/C) >

h(A|C). We have proved 3).

To prove 5) we use the fact that the function ¢(t) = —tlogt is concave. Hence
m

¢()_ P(Ai|C;)P(Cy|B,)) > Z¢ P(A;|C;))P(C;|B,) for all i and r. If B C C

then B, is a union of C’}s’ Hence Z P(A;|C;)P(Cy|By) = Z P(A;NC;)/P(B,)

j=1
where the sum is over those j for which C; C B,.. Thus Z P(A;|C;)P(Cy|By) =
j=1
P(A;|B,) and we get ¢(P(4;|B,)) > Z¢(P(Ai|0j))P(Cj|Br). Multiply-
j=1
’ P
ing by P(B,) and summing over r we get —ZP(A,- N B,)log P(A;|B,) >
b om r=1
—> > {P(Ai|C))log P(Ai|C;)}P(C; N B,)}
r=1j= 1
= fZ{P (Ai|Cj)log P(A;|Cj)}P(Cy) = =Y~ P(AiNC;)log P(A;|C;). This
7j=1 =1

says h(A |B) > h(A |C) and the proof of 5) le complete. To prove 7) note
that h(A\/BIC) = h(AIC) + h(B|A\/C) (by 1)) and the second term on
the right does not exceed h(B|C) by what we just proved, so h(A\/B\C) <
h(A|C) + h(BI|C). 9) is trivial.

n n
Notation: \/ A; denotes the sigma field generated by U A;.
i=0 i=0

Now h(A| \/ T~ A) = h(\/ T~ A) = h(\/ T~ A) by 2) with A replaced

=1 =0 =1
n

by \/T ‘A and B replaced by A. Hence h(A| \/T tA) = h( \/T tA)

=1 =1 =0
n—1

N n N
h( \/ T-*A) (by 10)). Summing over n we get Z h(A| \/ T7A) = h(\/ T A)—

=0 n=1 i=1 =0
n

N N
h(A). This gives %h(\/ T7'A) = +h(A) + + Zh(.A| \/ T='A). The se-
3 n=1

i=1

quence {h(A] \/ T~%A)} is decreasing (by 5)) and non-negative, hence con-
i=1
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N n
. 1 —i . . . .
vergent. Therefore 1\;21(1;0 ~ g h(A] \/ T—"A) exists (and is finite).This proves

n=1 =
N ! N
that A}gnooﬁh(\/ T~ A) exists and equals nleréoh(A| \/ T-'A).
=0 i=1
Definition
h(A,T) = lim \/TZA*hmhA\\/TZA

1=0 =1

This is called the entropy of A relative to T.

Caution: it is not true that h(A ,T) = lim h(A| \/ T='A). In fact the
=0
right side is 0 becaube h(A |B) =0if A C B However in the equation h(A

,T) = lim 1h \/T ‘A) we can replace \/T ‘A by \/T i A. This follows

’I’L—)DO
=0 =0 1=1
n n

from the fact that h( \/ T—'A) <h( \/ T A) <h(A)+h( \/ -1 A).
i=1 i=0 i=1

Theorem.

1) The sequences {1h( \/ T=1A)} and {h(A| \/ T—*A)} (whose limits ap-
i=0 i=1
pear in above definition) are both decreasing.

n—1
2) h(A,T) = lim (T A \/ 77'4)
=0
3) It T is im.p. then (A ,T) = lim h(A| \/ T"A).
=1

4) h(A,T)<h(B,T)if ACB
( \/ T7'AT) = h(A,T) if m > n > 0 and the same equation holds

i=n

without the condition n > 0 when T is i.m.p.
k-1
h( \) T7ATF) = k(A T) for k= 1,2, ...
i=0

7 h(A,T) < h(B,T)+ h(A|B)
Proof: we have already seen that the second sequence is decreasing. The
N N

first sequence is decreasing because %h(\/ T7'A) = +h(A) + & Zh(A

n=1

n n—1
\/ T-'A). To prove that h(A ,T) = lim h(T "A] \/ T-*A) we note that
i i=0
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k—1 k—1

T-kA| \/ T—'A) = h( \/ T7'A) — \/ T—tA) (by 2) of previous theorem

=0 =0 =0
k—1 N
with A replaced by \/ T~ A and B replaced by T~*A). Hence % Z h(T~*A|
=0 k=
-1 N k—1 '
\ T77A) = 2h(\/ T7'A) = %h(A). Also h(T~FA|\/ T~ A)
i i=0 i=0

k
= W(IT= VAT \/ T A) = (T~ A \/ T~ A) > (T~ A
=1

=1

k k—1
\/ T~ A) so the sequence {h(T~FA| \/ T—%A)} is decreasing. It follows that
=0 =0
N k—1
the limit of this sequence is also the limit of %Zh kA \/ T7'A) =
k=1 i=0

N
Fh(\/ T~ A) = Lh(A) which is h(A ,T).
i=0
We have proved 2) and 3) follows 1mmed1ately 4) is easy: A C B implies

\/T 7AC\/T ‘B and hence h( \/T tA) Ch( \/T ‘B). Dividing by n + 1

=0 i=0 =0
and letting n — co we get h(A , T) < hB,T).
N-1 m N+m—1-n m
We have \/ T \/ T9A=T™" \/ T—"A. Therefore + \/ T \/ T7IA) =
=0 j=n =0 j=n
N+m—1—n
= Mmool oL h( \/ T—'A). Letting N — oo we get 5).
i=0
k—1
We now prove 6): \/ TA,TF) = kh(A ,T) for k=1,2, ...
=0
n—1 k—1 nk—1
We have Lh( \/ T ““(\/ T=IA)) = k2h( \/ T—IA) since {ik +7:0<
i=0 j=0 Jj=0

i <n-10<j <k-1} = {0,1,....,nk — 1}. Letting n — oo we get

h(\/ TIA,T) = kh(A,T).
7=0
Before proving 7) let us observe the following:

Corollary

If T is rotation on S! by a root of unity then h(A,T) = 0 for any A.
k—1

Indeed T—% = I for some i and so h(\/ TAT): k=1,2,..} is a finite
j=0

set! It follows that {kh(A,T)} is bounded and hence h(A,T) = 0.
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We shall see later that the conclusion holds for all rotations of S?.

Proof of property 7) of the theorem:

n—1 n—1 n—1 n—1 n—1 n—1
h(\/ T7A) <n(\/ T77A\ \/ T7B) = h(\/ T=7B)+h( \/ T7 Al \/ T7'B).
j=0 =0 i=0 j=0 §=0 i=0
n—1 n—1 n—1 n—1
By 8), 5) and 9) of previous theorem we have h( \/ T A| \/ T7B) < Z h(T—IA| \/ T7B) <
j=0 i=0 3=0 i=0
n—1 n—1 n—1
WTJAT=IB) = Y h(A|B) = nh(A|B). This gives 1a(\/ T/ A) <
Jj=0 J=0 J=0
n—1
Ln( \/ T=9B) + h(A|B). The proof is completed by letting n — oo.
Jj=0

Definition: the entropy h(T) of a m.p. transformation T is defined by h(T") =
sup{h(A,T) : A is a finite sigma field contained in F}.
Thus rotation by a root of unity has entropy 0.

Theorem | Kolmogorov, Sinai]

If T is im.p. and A is a finite sub sigma field such that \/ T™(A) =F

n=—oo

then A(T) = h(A,T).

Lemma

Let A C 0(A,) where A and Aj are fields contained in F and A is finite .
Let € > 0. Then there is a finite field B contained in Ay such that h(A|B) < e.
The hypothesis that A C 0(A,) can be weakened to the condition that each
A € A differs from a set E in o(A,) by a null set.

Let A = {A1,As,..., A} and assume ( without loss of generality) that
P(A;) > 0 for each i. Let ¢(t) = —tlogt,0 < ¢t < 1 and ¢(0) = 0. We
can find ¢ € (0, 1) such that ¢(t) < e/kfor 0 <t < Jaswellasfor1—-9 <t <1.

Claim: there is a finite field B contained in Ay generated by a parti-
tion ({B1, Ba, ..., Br} with same number of sets as {Aj, As, ..., A }) such that
P(AtlBl) >1-46,i=1,2,...,k.

Let us first see how this claim proves the lemma. We have P(A4;|B;) < ¢

k
for j # i since A; C A¢. Hence h(A[B) = — Y P(A; N B;)log P(A|B;) =
ij=1
. J
—> P(A;N Bj)log P(Ai|B;) = > P(A; N B;)log P(A;|B;)
i#j i=1
k k
=Y P(B))o(P(AilB)+Y_ P(Bi)(P(AilB))) < £{>_ P(Bj)+Y_ P(Bi)} =
i=1 i=1

i i)
e. It remains to prove the claim. Let A > 0 be so small that (k — 1)(A + k(k —
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D) < 51@3;(;»_ Let p > 0 be such that (k — 1)[p + 2k(k — 1)p] < A For

1 <i <k choose C; € Ag such that P(A;AC;) < p. Let E = U(Cl NCj). Let
i#)
k—1
B, =C/\E for1 <i<k-—1and By =Q\ U B;. We only have to verify that
i=1
P(A;|B;) >1-46,i=1,2,...,k. For this it suffices to show that P(4;AB;) < A
for each i. For, we would then have P(A;) < P(B;) + A < P(B;) + P(2 i)
S0 P( i) < 2P( ) which implies P(BIL) — P(Az n Bz) <A< 5P( i) and
P(A; N B;) > (1 —0)P(B;) or P(A;|B;) > 1 — 4 as required. If i # j
then P(C; N C;) < P(C;AA;) + P(A;AC;) < 2p and P(E) < 2k(k — 1)p.
Thus for z < k, P(A;AB;) < p+ 2k(k — 1)p < X. Finally P(A;,ABy) =

UAAUB (k—1)[p+ 2k(k — 1)p] < \.

Proof of Kolmogorov-Sinai Theorem:

we have \/ T"(A) = F. Let B be any finite subfield of F. We have

n=-—oo

N
to show that h(B,T) < h(A,T). Let Ay = \/ T™(A). By 5) of previous
theorem we have h(Ayn,T) = h(A,T). Hence h(B,T) < h(An,T) + h(B|Ax)
= h(A,T) + h(B|Ay). It suffices to show that h(B|Ay) — 0 as N — co.
Let Ay = U‘A”‘ Ay is a field which generates F which contains B. Hence, if

e > 0 is given we can find a partition C = {C},Cs,...Cy,,} with each C; € Ay
such that hA(B|C) < e. There exists ng such that each C; € A,,. For N > ng we
have h(B|An) < h(B|A,,) < h(B|C) < e.

Remark .

There is a version of this theorem when T is not invertible. If \/ T "(A) =

n=0
N

F then h(T) = h(A,T). The proof is similar. [ In place of \/ T"(A) in above

n=—N
N

proof we use \/ T™(A). We omit the details].
n=0

Example: consider a stationary sequence {X,, }*°, with state space {1,2, ..., N }.
The canonical version of this makes the projection maps {...,p_1, po,p1,D2, ...}
a stationary sequence on (R*°, B°° P) for a suitable probability measure P. Let
T be the shift transformation: {w,} — {wn41}. The sigma field F = B> is
o0

generated by U T-"A where A is the field generated by the sets {w : wy =

n=—oo
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i},1 <14 < N. By Kolmogorov-Sinai Theorem we have h(T') = h(A,T). Hence

R(T) = lim h(A] \/ T*(A)). A partition for \/ T*(A) is the family of sets
k=1 k=1

{wiw_1=14_1,w_9=1i_9,...,w_p =14_p}. Hence h(A] \/ TF(A))
k=1
= Z P{{w_1 = i_1,0J_2 = i_g,...,w_n = i_n}z¢(P{WQ =
T1,8—2,eylop %0
iolw—1 = i-1,w_2 = G_9,..,wW_p = G_p}. From this it is clear that h(A|

\/ Tk(.A)) S 10gN. [ Z¢(P{WO = i0|w,1 = 7;,1,(,0,2 = Z',g, ey Wy = i,n}
k=1 i0

= _ZP{UJO = Z'0|w,1 = i,l,w,g = i,g,...,w,n = i,n}logP{wo =
i0
Z‘0|W—1 = i—law—Q = 7;—27"'7"‘}—n = i—n}

o . o . . 1
= E Plwo =iolw—1 =i1,w_g =i, wpn =i} 08 S e e e

0
_ _ _ _ 1 _
< log E P{wo =dplw_1 =i_1,w_2 =i_9,...,w_p = Z_n}P{UJ0=’L'0|UJ71=’L'71,w,2=i,2,...,w,n=i,n} =
0

log N].
Now we assume that 7" is a Bernoulli shift so that p/ s are i.i.d. with distri-
bution {aq,as,...,an}. We have

(Al \/ TH(A))
k=1

= Z P{w_1 = i1, w9 = i_9,..,w_y = i—7L}Z¢(P{wO =

[ P

7:0 Ww_1 = i_1,w_2 = i_Q, ey Wy = i—n}

= Z Qi Qg Oy Z ¢(ai0) = - Z Qg IOg Qg - Thus h‘('A|
io 10

To1,8—2,..,0—n
N

n N
\/ TFA)) = — Z a;log ; for every n which implies that A(T) = — Z a;log ;.
k=1 i=1 i=1

In the case of a Markov shift with initial distribution {1, as,...,an} and
transition matrix ((g;;)) we get

h(Al'\/ T*(A))
k=1
= Z P{w_1 = i,w_o = i_g,...,w_y = i,n}ZQS(P{wO =

1—1,1—25..37—n

iglw_1 =i 1,w_2 =i 9,..,W_p =1i_pn}

= h(A| \/ T*(A))
k=1

= Z Qi Qi qigini_(n_1) Z ¢(q’i—1i0) = Zai—l Z¢(qi—li0) =
io 7:—1 iD

1—1,1—25..37—n
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Zaiqij log g;; for each n and so h(T) = Zaiqij log ;.

i,j ,J
Theorem

If T is i.m.p. and \/ T7"(A) = F then h(T) = 0.

n=0

Proof: AC FCTYF)= \/ T-"(A). Hence (by the lemma used in the
n=1
proof of Kolomogorov-Sinai Theorem) we can find a finite field B contained in

the field | ) \/ T7"(A) with h(A|B) < €. For large n,B C \/ T7"(A) and

m n=1 n=1
h(A| \/T_i(.A)) < h(A|B) < e. Letting n — oo we get h(A,T) < e. Since
i=1

e is arbitrary we get h(A,T) = 0. By Kolmogorov - Sinai Theorem we have
H(T)=h(A,T)=0.

Corollary
All rotations on S* have entropy 0.

Proof: let Tz = az and A = {A, B} where A = {¢*™ : 0 < ¢ < 1} and

B = A¢. We claim that \/ T"(A) = F, the Borel sigma field of S*. If a is not

n=0

a root of unity then {a™ : n = 1,2,...} is dense in S and \/ T™(A) contains

n=0
o

half circles starting at points of a dense set. Hence \/ T"(A) = F and T has

n=0
entropy 0. If a is a root of unity we have already proved that the entropy is 0.
Theorem
h(T*) = kh(T) for any positive integer k. If T is invertible measure preserv-
ing then h(T~!) = h(T) and h(T*) = |k| h(T) for all integers k.

Proof: we claim that h(k\i/1 T~(A),T*) = kh(A, T). Note that %h(l\if T*ik{k\i/1 T7I(A)} =
- i=0 . i=0 j=0
Exph( \/ T7H(A)). Letting N — oo we get h(\/ T77(A),T%) = kh(A,T).
On the Zozlfe hand this gives kh(A,T) < h(T*) fOJrJ;l(lJ A so kh(T) < h(T*) and
on the other hand it gives h(A,T") < h(k\y1 T=I(A), T*) = kh(T) so h(T*) <
=0
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k—1
kh(T). Thus h(T*) = kh(T). Now let T be im.p. Then h(\/ T7(A)) =

§=0
k—1 k—1 k—1
h(\/ (T=1)7I(A)). But h(\/ T9(A)) = h(T—<k—1>(\/ Ti(A))) since T is m.p.
= k—1 = = k—1
It follows that h(\/(T~1)~ \/ Ti(A)) = h(\/ T77(A)). Divide

i=0 Pl
by k and let k — oo to get h(T 1) = h( ). If k is a negative integer then
h(T*) = h((T~Y)*) = h(T~%) = —kh(T). This completes the proof.

Remark

We state two results without proof:

1. If {A,,} is a sequence of finite fields whose union generates F then h(7T') =
lim h(A,,T)

2. h(T x S) = h(T) + h(S)

These facts are not used in these notes.

Suppose (Q,F, P,T) and (', F', P/, T") are DS’s. If there exists a bijection
7 :  — Q such that 7 and its inverse are measurable, P'(7(4)) = P(A) and
T(T(w)) = T'(7(w)) Yw €  we say that the m.p. transformations T" and 7" are
isomorphic. Actually, we modify this definition by allowing 7 to be a bijective
map between sets of full measure in the two spaces where the sets of full measure
are invariant under the respective transformations. An important question in
Ergodic Theory is: when are two m.p. transformations isomorphic. Entropy is
an isomorphism invariant: if 7" and S are isomorphic then h(T) = h(S). Is the
converse true? The answer is no: if T'is rotation on S* by a root of unity and T’
is rotation by a non-root of unity then hA(T") = h(S) = 0. Since T is not ergodic
and S is ergodic they are not isomorphic. The celebrated Ornstein Isomorphism
Theorem says that two Bernoulli shift with same entropy are isomorphic. The
proof of this is not included in these notes.

Definition: let A be a finite field contained in F and G a sub-sigma field
of F. We define h(A|G) as EZgb P(A;|G)) where) {A;, A, ..., An} is a par-

i=1
tition generating A and ¢(x) = —xlogax If G is generated by a ﬁnlte partition
{B1, By, ..., By} then P(A;|G) = ZP (44| B;)Ip, so h(A|G) = ZZ¢ (Ai|B;))P(B;) =

Jj=1 j=1i=1
—ZZP(Ai\Bj)P(Bj)log P(A;|Bj) so our new definition agrees with the

j=11i=1

old definition in this case. We have h(A|G) = —EZP(AAQ) log P(A;|G) =

=1

E{- Z I4,log P(A;|G)}. Indeed the last expression can be evaluated by con-
i=1
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ditioning on G and this yields the last equality. For future reference we state
this as:

Theorem

WAIG) = E{=_ L4, log P(4iG)}.

i=1

Theorem

h(A\/ BIG) = h(A|G) + h(BIA\/ G)

)

) h(A|G) < h(B|G) if AC B
3) h(A|G1) < h(A|Gs) if GoC Gy
1) h(A\/ B|G) < h(A|G) + h(B|G)
5) (T~ *A|IT~1G) = h(A|G)

Proof: we have P(B\A\/g ZIA Pfégﬁgl)g smceEZIA P(BgiA‘gl)g)IclAj =

EB(I, 25558 101G)

= BP(4;]0) 2855 10 = EZP BN A;|G)Ic = P(BNA;NC) for all

C € G and for all j, proving that EZIA PEDBQiA‘gl)g)ICIA =P(BNANC) for

all C € Gand forall Ae A ( because every set in A is a disjoint union of A’s).
Since A\/ G is generated by sets of the type ANC with A € A and C € G we

have proved that P(B|A\/ g) = Z I % [ The m — A Theorem may be

used here].

Now h(B|A\/G) = —E Z P(B;|A\/ G)log P(B;|A\/ )

_ P(B;NA; \g) P(B;NA;|G)
_—EZZI P(A ) logZI P(A %)

_ P(B NA;|G) P(B ﬂA 1G)
- _EZI P(A;]G) log P(A;]G)

= —EZI PO 108 P(B;N4i(G) +EZEIA i 10g P(4:G)

i,

= —EZP B; N Ai|G)log P(B; N A;|G)+E > P(B; N A;|G)log P(A;|G)
i,j ]

(where we used conditioning on G)

= h( A\/B|Q +EZP (A;1G)log P(A;|G) = A\/B|Q h(A|G) proving

that h( A\/B|Q = h(.A\g) + h( B\A\/g . We have proved 1). 2) follows
trivially from 1). It remains only to prove 3) since 4) follows from 3) and 1)
(and 5) is trivial). To show h(A|G1) < h(A|Gs) if GoC Gy1. Let X = P(A|G1).
We have E(¢(X)|G2) < ¢(E(X|G2) = ¢(P(A|G2)). Hence
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ZE P(A]G1))|G2) < EZ¢ (A;]G2)). The right side is h(A|Ga).

NotethatE( (P(Ai]G1))|G2) = ( (P(A;]G1)) sotheleftmdelsZE P(4;]Gy)) =

i

h(A|Gy). This finishes the proof.

Theorem

If G, T G then h(A|G,) — h(A\g) a.e.
We have h(A|G,) = EZ¢ P(4;]G,)) — EZ¢ (4i]G)) = h(A|g) b

i=1 i=1
Bounded Convergence Theorem.

Remark: we could have used this in the proof of Kolmogorv-Sinai Theo-

rem: A, C A,41 and A C \/ A, implies lim h(A|A,) = h(A] \/ Ap) <
k=—o0 k=—o00

(A|.A) = 0. In the proof of Kolmogorv- Slnal Theorem we had to prove that
h(B| \/ Tk A) — 0. We know that h(B| \/ TFA) — h(B \/ T*A)

k=—n k=—n k=—o0

h(B|F) = 0.

SHANNON-McMILLAN-BREIMAN THEOREM

Let T be the shift associated with a stationary sequence.

Let Q = H{I,Q...,N},]—' = cylinder sigma field and P a stationary mea-
sure (i.e. a probability measure which makes the shift transformation {w,} —
{wnt+1} m.p.). Let A, be the field generated by the partition {w : wy =
i0,W1 = 41, Wn = dn} (i%s € {1,2,..,N}). By Kolmogorov-Sinai Theo-

rem h(T) = where hopn—1 = h(A,,T). | \/ T™(Ap) = F then
W(T) = h(Ao, T) =. lim Lh( \/ T71A) = h(A,, T)].
=0
Let p(io.91, ..., in) = P{w : wo = g, w1 = 91, ..., wn, = i, }. We have hgp_1 =

1ogp(Y1,Y2, ...,Yn) where we have denoted the projection maps on 2 by
Yn, n € Z.
Hence h(T) = — lim L Elogp(Y7,Ys, ..., Yy).

Theorem [Shannon-McMIllan-Brieman]|
If T is ergodic then — lim 1 logp(Y7,Ys,...,Yy) = h(T) a.e..
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we first remark that if T is a Bernoulli shift then p(Y7, Y, ..., Y,) = py; Dy oDy,
so = logp(Yl,Yg, e Yy) = %Zlogpyk — FElogp,, (by SLLN or the ergodic

k=1
theorem)= ij logp; = —h(T).
Now let T be an ergodic Markov shift w1th stationary distribution {m} and
transition matrix ((p;;)). We have — lim Llogp(Y1,Ys,...,Y,) = — lim < log{my, pv,v;-.-Pv,_,v, }
n—1
= fnlingoilog Ty, — Z nlgr;o% log py, v, = —Flogpy,y, by the ergodic
k=1
theorem since Y, = T71(Y1) Vk. But —Elogpy,y, = — Z mipijlogpi; =

ij=1
R(T). Thus we have proved the theorem in these two cases. Now consider the
general stationary shift. Let gi(w) = —log p(};(’“y(wZ&w)’7 ¥ (wl)(?:o(w)) (k > 1) with
go(w) = —logpy, (w). Let

gl(:)( ) = —log (( ((w))’ 5 11(‘(*25;)(19 > 1). Note that these numbers are all

non-negative. Now — lim Llogp(Yy(w),Ya(w), ..., Yy (w)) = %ng(Tk(w))

n—1
This is because Z gr(TF(w)) = —log py, (w Z log ffz(w)ykﬁ( I)(Y%w))
k=0
n—1
P(Yo(w), -, Yi—1(w),Yi(w)) _ PVo(w), -, Yn—2(w),Yn_1(w)) _
—log Pl Vi @) = 108Dy, (w)—log BT
k=1

—logp(Yo(w), ..., Yn—2(w), Yn—1(w)) (*)

. Now P{Yy = i|Y_k,Y_p_1,....Y_1} — P{Yy, = i|Y_1,Y_5,...} and hence
gk (w) = —log P{Yy =4|Y_,Y_p_1,....Y_1} — —log P{Yy =4|Y_1,Y_5,..} on
{Yp = i}. In other words gx(w) — g(w)

where g(w) = —logp{Yp|Y_1,Y_2,...}. We now show that Esup{gy : k >
0} < oco. For this let A > 0 and E; = {w : maxg; < A < gx(w)}. Then

1<j<k

P(Ey) = ZP{{YO =i} N E}. Let Fy; = {w ax gj( W) < A < g (W)}
Then g;, = glC on {Yy =i} so P(Ey) ZP{{YQ = i} N Fy;}. Noting that

7

Fkﬂ' S U{Y_k,y_k+1, ...,Y_l} we get

. _ g (W), Y_1(w),i
P{Yp = i} N Fy;} = / eodP [ since gi) (w) = — log Ol ()

Fy i
so e 9 = P{Yy =i|Y_&,....,Y_1}].
Hence P{Yy =i} N Fy;} < e *P{Fy;}. Thus P{sup{gx : k > 0} > \} =

S P{E}=> > P{{o=i}nF}<e > Y P{Fp} <e?N
k k i k i
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since Z P{F},;} < P{Q} =1 for each i. It follows from this that sup{gy :

k
k > 0} has finite expectation. By dominated convergence theorem we get
n

Eg = lim Eg. Since T is m.p. we have E;ll ng(Tk(w)) = Egi. Thus Eg =
hoo k=1

lim BL ng (T*(w)) = —%klin;oElogp(Yg,Yl,...,Yk) (by (*))= h(T) [by the

k—o0

statement 1mmed1ately preceding the statement of this theorem]. We now write
n

L ng (T*(w)) as L Zg (T*(w Z:(g;~C —g)(T*(w)) and observe that the

ﬁrst term tends a.s. to Eg (by ergodlclty) If we show that the second term tends

to 0 a.s. we can conclude that 1 ng TH(w)){= =L log p(Yo(w), ..., Yn—2(w), Yn_1(w))}

k=1

converges a.s., as required. Let Gy = sup lgx — g|- Then lim sup Z{gk (T*(w

lim su %Z g(Tk(w))’
n k:

n

< hmbup Z |9k (T*(w)) —g(Tk(w))| < hmbup1 ZG (T*(w)) = EGyN

k=N k=1
by the ergodic theorem. This is true for each N and Gy — 0 a.s. as N — oo.

This completes the proof.
TOPOLOGICAL DYNAMICS

Let X be a compact metric space and T : X — X a homeomorphism. We
say T is minimal if the orbit Or(x) = {T"™xz : n € Z} of x is dense in X for each
zeX.

Remark: we can study continous maps instead of homeomorphisms. We
have assumed that T is a homeomorphism for simplicity.

Theorem

T is minimal iff C closed and TC = C imply C = or C = X.

Proof: Suppose T is minimal, C' is closed and TC = C. If x € C then
Or(z) € C. Since C is closed and Or(x) is dense we must have C = X.
Conversely suppose C closed and TC = C imply C =0 or C = X. Let z € X
and C be the closure of Or(z). Then TC = C but C is neither empty nor equal
to X.

Remark: minimality is the topological analog of ergodicity.
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Def. A minimal set is a non-empty closed set C such that T'C' = C' and the
restriction of T to C' is minimal.

Theorem
Minimal sets exist.

Proof: let € be the collection of all non-empty closed sets C' such that T'C' =
C. Clearly this collections is not empty. Order this by reverse inclusion. If {C;}

is a totally ordered family of sets in £ then m C; is nonempty ( by compactness)

i
and belongs to £. Hence there is a minimal element C' in £. For any = € C' the
closure of the orbit of z is a non-empty closed invariant set. By minimality of
C it must coincide with C. Hence C' is minimal.

Def. T is called semi-simple if there exists a partition of X into closed sets
{C;} such that TC; = C; for all ¢ and the restriction of T' to C; is minimal for
each 1.

It will be shown later that ergodic automorphisms of compact groups are
not semi-simple.

Def. z is a periodic point of T' if T™x = x for some positive integer n. The
least integer with this property is called the period of z.

Theorem

Let T be a minimal homeomorphism. Then

1) foT = f, f continuous implies f is a constant
2) T has no periodic points unless X is a finite set

Proof: let foT = f, f continuous. For any real number a let C = {z :
f(z) <a}. Cis a closed invariant set. By minimality of T" this closed must be
empty or X. If c = sup{a € R: C =0} then f(z) = c for all z.

Now suppose z is a periodic point. Then the orbit of z is a (finite, hence
closed) set which is also dense, so X is finite.

Example

Converse of 1) is false. An ergodic continuous homomorphism of a compact
metric group X is not minimal because the orbit of the identity is not dense;
however any invariant function is almost everywhere constant (by ergodicity)
and hence a constant if it is continuous. An explicit example is given after the
next theorem.

Theorem

Let T be a continuous homomorphism of a compact metric group G such
that v o T™ = ~ for some positive integer n and some character v of G implies
v = 1. Then T is ergodic. Converse also holds.
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Proof: we prove the converse part first. Let T be ergodic and suppose
vyoT™ = ~ but v # 1. Let k be the least positive integer with v o TF = ~.
Let f =~y +~yoT + .. +~yoTk 1 Then f is invariant and hence constant
a.e.. (hence a constant times the character 1). But the terms of this sum are all
distinct characters, hence orthogonal to each other and this cannot happen. Now

consider the direct part. Let f be invariant. Let f = chvnbe the Fourier

series of f. Then Z enYn(Tx) = Z cnYn(x) and v, o T7 is also a character for

each n and each j. Ifvy,,,7,,0T,7,,0T?, ... are all distinct characters then they are
orthogonal and < f,,, o T >=< f,~, > by invariance of f so the coefficients
< f,7,, oT7 > in the Fourier expansion are all equal. This implies that they
are all 0 since the coefficient sequence belongs to /2. Thus < f,7,, >= 0 in this
case. If f # 0 then there exists n such that < f,~, >% 0. For this n it follows
that v,,,7, o T,7, © T?, ... are not all distinct, i.e. there exists j < k such that
Y, 0TI =~, oTk. Thus v, o TP =+, where p = k —j € N. By hypothesis
we must have v, = 1. This conclusion holds for any n such that < f,v, ># 0.
Thus there is only one non-zero term in the Fourier expansion of f and f is a
constant.

Remark: in particular the map T : ST — S! defined by Tz = 2™ (where n is
a positive integer) is ergodic iff 2"™ = 2™ n > 1 = m = 0. Thus T is ergodic
iff n#1. Also z — % is not ergodic.

Remark: consider now the map T'(a,b) = (a®,b?) on the torus. Any character
~ is of the type (a,b) — a"b® where r and s are integers. If v oT™ = v and
n € N then a®""b*"* = a”b® for all a,b € S* which implies 7 = s =0 and v = 1.
Thus T is ergodic. Since T'(1,1) = (1,1) this map is not minimal.

Examples

1. Let T be a rotation on a compact metric group G : T'g = ag where a € G.
The T is minimal iff {a" : n € Z} is dense. In fact Or(e) = {a™ : n € Z} and if
this dense then so is Or(g) = {a"g : n € Z} for any g.

2. A continuous automorphism of a compact metric group G is minimal iff
G = {e}. This is trivial since Te = e.

o0
3. Consider the shift 7" on Q2 = H{l, 2,...,N}. Under addition modulo N
—00
on {1,2,..., N} and pointwise addition on the product © becomes a compact
metric group and T is a continuous automorphism. Hence T is not minimal.
Of course the orbit of {w, } where w, =1 for all n is a singleton set which
is not dense.

Def. A homeomorphism T of a compact metric space X is called topologically
transitive if Or(x) is dense for some © € X.

Of course, if T' is minimal then it is transitive

Theorem
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FAE for a homeomorphism 7' of a compact metric space X
1) T is topologically transitive
2) C closed, TC = C = C = X or C has no interior
3) U open, TU =U = U = or U is dense
4) U,V open and non-empty = T"(U) NV # @ for some integer n
5) the set of points whose orbits are not dense is of first category

Proof:

1) implies 2): let Or(zo) be dense, C closed and TC = C. If zy € C then
Or(z9) C C and so C = X. Otherwise, Or(zg) € C° ( because TC = C).
Hence C¢ is dense and C has no interior.

Equivalence of 2) and 3) is trivial.

3) implies 4): let U and V' be non-empty open sets and suppose, if possible,

T"(U)NV = ) Vn. Then U T™(U) is a non-empty open invariant set and hence

it is dense by 3). But this set if disjoint from V' which is a contradiction.
4) implies 5): let {U,} be a countable base for the topology of X. Then
Or () is not dense < Or(z) NU, = () for some n & T*x € US Vk for some

n & x € UﬂT (UE). We have to show that UﬂT (UE) is of first
n k
category. We prove that mT Uf) is nowhere dense. This set is closed so we

k
have to show that it has no interior. If a nonempty open set V is contained in
ﬂT (UE) then T*(V)N U, = for all k which contradicts 4).

5) implies 1) follows from Baire Category Theorem.

Theorem

Consider a continuous map T of a compact metric space X. Let P be a
Borel probability measure whose support is X. Suppose T' is m.p. and ergodic
w.r.t. P. The the set of points whose orbits are not dense is of measure 0.

Proof: let {U,} be a base for the topology of X. {T"x : n =0, 1, ...} is dense
oo [ee] oo oo
in X if and only if z € ﬂ U T-*U,. Since T_l(U T-*U,) C (U T-*U,)

n=1 k=0

and T is ergodic we must have P(U T-*U,) = 0 or 1. Since U T-%U,
k=0 k=0

contains U,, and P(U,) > 0 we must have P( U T-*U,) = 1. This is true for
k=0

each n and hence P( m U T-*U,) = 1. Thus the one-sided orbit of almost

n=1 k=0
all points are dense.

Corollary
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Let T be an affine map on a compact connected metric abelian group G.
Then T is ergodic (w.r.t. Haar measure) iff it is topologically transitive.

Proof: let T'g = goSg where go € G and S is a continuous automorphism.
Previous theorem shows that ergodic transformations are transitive. Let T be
transitive. Claim: if 7 is a character and v o S* = v with k£ € N then y0 S = .

For this let 7o(g) = 7(g71S9)) = L34 Then ~,(T%(g))

= 70(90590---5" 1905 9) = v4(90590---S* " 90)v0(S*9) = ¥(g5 " (S*90))v0(S*g) =
Yo(9) -
because v(5*(g0)) = v(g0) and 75(S*g) = 7o(9). [vo(S*g) = Losrrd =

AE(Sg)) = 7,(g)]. Hence , 0 T* = 7,. Since T is transitive there exists g; such

that Or(g1) is dense. It follows that -y, takes only finite number of values on
this dense set. Since G is connected 7, must be a constant. Thus V,Y((S;;) =

for all g and the claim is proved. Our next claim is that the smallest closed
sub-group containing gy and the range of the map g — g~'Sg is the whole of
G. Otherwise there is a character v such that v(go) = 1,7(¢~1Sg) = 1 for all
g but v # 1. [ We take this result from Representation Theory for granted].
Note that v(T'g) = ~(g90S59) = 7(90)7(S9) = 7(Sg) = 7(g) and, by iteration
¥(T"g) = v(g) for all n. On the dense set Or(g1) the character v takes only
the value v(g1) and hence v = 1, a contradiction. We now prove that the two
claims above imply ergodicity of T. Let f be a T invariant function in L?. Let

f= ch'yn be the Fourier series of f. Then ch'yn (9059) = chfyn(g)

or Z enYn(90)7,(Sg) = Z Cn7,- Dy iteration Z CnYn(90)7, 0 S* = Z Cn Y,

for each positive integer k. Fix 4. If 4;,7v;,05,7, 0 527 ... are distinct characters
then, since |y;(go)| = 1, infinitely many coefficients in the series on the left will
have the same modulus (viz. |¢;|) forcing this coefficient to be 0 [ becuase the
coefficient sequence is square integrable]. Thus < f,~, > 0 implies v; o S™ =
v; 0 8™ with n # m. But then v, o SI"™ = 5, . By the first claim above

we conclude that v, o S = 7,. But then 7, = 1 on {g~!Sg : ¢ € G}. From
the equation Z cnYn(90)7,(Sg) = ch'yn we conclude that v,(go) = 1. By

Claim 2 the subgroup generated by {g_lS g:g € G} and gq is dense. It follows
that v, = 1 whenever < f,7, ># 0 implying that f is a constant. This finishes
the proof.

Theorem

If T is topologically transitive and f is a continuous invariant function then
f is a constant.

Proof: this is obvious.

Some examples:
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we first give an example to show that the converse of above theorem is false.
Let X be the disjoint union of two copies of the torus joined at the identity,
ie. X = ({St x St x {0}) U ({S* x St x {1})/” where ~ identifies (1,1,0)
and (1,1,1). Let S be an ergodic automorphism of the torus and T'(a,b,0) =
(S(a,b),0),T(a,b,1) = (S(a,b),1). Then T maps each of the two tori into
themselves so no orbit can be dense. If f is a continuous invariant function then
it is constant on each of the two tori and the constants must be the same since
there is a common point (1,1,0) = (1,1, 1).

Our next example shows that Or(x) can be dense for some z and a finite set
for a set of points that is dense! Let T be a continuous ergodic automorphism

o0
of the torus S' x S! and E = U {(a,b) € St x S': @™ =1 = b"}. First note
n=0
that any point in S* can be approximated by a root of unity. [ This just the
statement that the set of rationals in dense in R]. Given two points a and b in
S1 we can approximate them by roots of unity ¢ and d and there exists n such
that ¢ and d" are both 1. Hence FE is dense in the torus. If a” =1 = 0" then
T"(a,b) = T{(a,b)"} = {T(a",b™)} = T(1,1) = (1,1). Hence the orbit of each
point of E is a finite set. However, by an earlier theorem the set of points whose
orbits are dense has full measure since T is ergodic.

Theorem

Let X be a compact metric space and T : X — X a topologically transitive
homeomorphism. If there is an equivalent metric which makes 7" an isometry
then 7" is minimal.

Proof: let d be a metric for X which makes T' an isometry. Let 2y be a point
whose orbit is dense. Let x € X. We have to show that the orbit of z is dense.
Let y € X and € > 0. We can find integers n, m such that d(x,T"(zo)) < € and
d(y, T™ (x0)) < €. Now d(y, T™"(z)) < d(y,T™(x0)) + d(T™"zo, T " (z))

=d(y,T™(x0)) + d(T™(x0), x) < 2¢. This finishes the proof.

Remark: let T'g = ag on a compact connected abelian metric group G. Then
TFE

1) T is ergodic

2) T is minimal

3) T is topologically transitive

4) {a™ : n € Z} is dense.

[ we have proved 1) and 3) are equivalent. The equivalence of 2), 3) and 4)
is trivial].

Conjugacy and spectrum:

let T" and S be homeomorphisms of compact Hausdorff spaces X and Y
respectively. We say that T and S are (topologically) conjugate if there is a
homeomorphism ¢ : X — Y such that So¢ =¢oT.
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Conjugacy is an equivalence relation and minimality as well as transitivity
are conjugacy invariants. | This means that if 7" and S are conjugate and one
of them has one of these properties so does the other]

Let T be a homeomorphism of compact metric space X. If foT = A\f where
f € C(X)\{0} and X € C then A is called an eigen function of T corresponding
to eigen value A.

In the next four theorems T is a transitive homeomorphism of a compact
metric space.

Theorem
If and foT = A\f where f € C(X)\{0} and A € C then |A\| =1 and |f] is a
constant.

Proof: sup{|f(T(z))| : « € X} = sup{|f(z)] : © € X} # 0 since T is
bijective. However the left side also equals sup{|A| |f(z)| : z € X}. It follows
that |A] = 1. It follows that |f| (Tx) = [A||f(z)] = |f(z)| so |f] is constant on
the orbit of any point. Since there is a dense orbit,|f| must be a constant.

Theorem
The eigen space corresponding to a given eigen value is one dimensional.

Proof: let foT = Af,goT = Ag, f # 0,9 # 0. By previous theorem f and g
never vanish. It follows that g is invariant. It is constant on a dense set hence
on X.

Theorem
Figen functions corresponding to distinct eigen values are linearly indepen-
dent.

N
Suppose fioT = \;fi,1 <4 < N, with \}s distinct. Suppose Zaifi =0.
i=1

N N
We get Zai)\gfi(x) = Zaifi(Tj(a:)) =0for 0 <j < N —1. View this as
i=1 i=1

a system of N linear equations in the N variables a;f;(z),1 < i < N. The
coefficient matrix of this system of linear equations is non-singular.[ This is
a vander Monde matrix and the determinant is the product of the numbers
(A — A;) with & < j]. Hence a;f;(z) =0 for all 4 and z. But f; # 0 implies
fi(x) # 0 for all z and hence a = 0 for all i.

Theorem
Eigen values of T form a subgroup of S'.

Proof: this is trivial.
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Theorem
T has at most countably many eigen values.

Proof: let foT = Af, f # 0,\ # 1. We may suppose that f(xzg) = 1 for some
xo. We claim that ||f — 1|| > 1/2 where ||| is the supremum norm. Choose
n € N such that |\" — 1| > 1/2. [If X is not a root of unity then {\" : n > 1}
is dense. If it is an N — th root of unity where N > 2 let \; = Ae2mik/N
where k = N/2 or (N — 1)/2 according as N is even or odd. We claim that
either |\ — 1] > 1/2 or |\ — 1| > 1/2. If these inequalities are both false then
|A = A1] < 1 which implies |1 — eQ’Tik/N| < 1. This gives 2 — 2cos(2mk/N) < 1
or cos(2wk/N) > 1/2. When N is even this gives the contradiction —1 > 1/2
and when N is odd we get cos(m(1 — +)) > 1/2 which is again a contradiction
since 7/2 < w(1 — 3-) < m. Now observe that Ay is also an N — th root of unity
and hence it is of the type A" for some positive integer n].

Then ||f —1|| > |f(T™xo) — 1] = |A\"f(z0) — 1] > 1/2. Now if there are
uncountable many eigen values then there are uncountable many eigen functions
fi(i € I) associated with distinct eigen values such that |f;| =1 Vi. Thus f;/fi
is an eigen function associated with an eigen value # 1 so ||f;/fir — 1| > 1/2
whenever ¢ # i’. But then ||f; — fir|| > 1/2 whenever i # ¢’. This contradicts
the separability of C(X).

Definiton: we say T" has a topological discrete spectrum (tds) if the the closed
subspace of C'(X) spanned by eigen functions is C(X).

Note that if 7" has tds and T is also transitive then there exist continuous
functions {f, : n = 1,2,...} such that f,,oT = A, fp,, f, s are linearly independent
and the closed subspace of C'(X) spanned by eigen functions is C(X).

Definition: Let T and S be homeomorphisms of compact metric spaces X
and Y respectively. We say T is topologically conjugate to S if there exists a
homeomorphism ¢ : X — Y such that ¢poT = S o ¢.

Theorem [ Halmos and von Neumann]

Let T be a homeomorphism of compact metric space X. TFE

1) T is topologically transitive and it is an isometry for some equivalent
metric

2) T is conjugate to a minimal rotation on a compact abelian metric group

3) T is minimal and has topological discrete spectrum

4) T is topologically transitive and has topological discrete spectrum

Proof: 1) implies 2): our aim is to make X itself a compact abelian group so
that T" becomes a minimal rotation on it and the identity map is the required
conjugacy map. Let d be an equivalent metric that makes 7" an isometry. Let
Or(zg) be dense. Define x on Or (o) by T"(xo) * T™(z0) = T"T™ (). Since
d(T™ (o) * T™(x0), TP (x0) * T (xq)) = d(T™™(20), TPT4(x0))

< (T (o), TP (o)) + d(TPH (o), TP (x0)) = d(T" (wo), TP (w0)) +
d(T™ (o), T(0))
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the map * : Or(zg) x Or(xg) — Or(xp) is uniformly continuous, so it ex-
tends to a continuous map : X xX — X. Alsod(T "xg, T "xg) = d(T"xo, T™x)
so the map T™(zp) — T~ " () is uniformly continuous and extends to X. Thus
X becomes an abelian topological group ( in which z¢ is the identity and the
inverse of T"xq is T "xq). Note that T'(T™(x¢)) = T'(zo) *T™(xo) so T acts as
rotation by T'(z¢) on X. By an earlier theorem this rotation is minimal. Clearly
T is conjugate to this rotation (via the identity map).

2) implies 3):

Let S be a minimal rotation on a compact abelian metric group G. We have
to show that S has discrete spectrum. Each character « is an eigen function.
Linear span of characters is an algebra which contains constants and separate
points. Also the complex conjugate of a character is a character. By Stone-
Weirstrass Theorem eigen functions span a sense subspace.

3) implies 4) is trivial.

4) implies 1): suppose fn, o T = Apfu, fu £ 0,|fn] = 1 f’s linearly inde-

pendent and span a dense subspace of C(X). Let D(z,y) Z ‘f"(x —Fn Wl

D(Tz, Ty) Z \fn(ch) —fu(Ty)| ZP‘ |M = D(x,y). All that

n=1
remains is to show that D induces the original topology of X. Since each

fn is continuous convergence in the original metric implies convergence in D.
If D(zj,z) — 0 then f,(z;) — fu(z) as j — oo for each n. This implies
f(xzj) — f(z) for any f € C(X) [ because f},s span a dense subspace of C'(X)].
This implies that z; — « in the original metric. [ Let € > 0. There is a contin-
uous function f: X — [0, 1] such that f(z) =0 and f(y) =1if y € X\B(z,e€).
Since f(z;) # 1 for j sufficiently large we get z; € B(x,¢) for such j].

Theorem [ Topological Discrete Spectrum Theorem]

Two minimal homeomorphisms of compact metric spaces are topologically
conjugate iff they have the same eigen values.

We do not prove this theorem.

Theorem
Let T be uniquely ergodic and P be its unique invariant measure. Then T'
is minimal iff P has full support.

Proof: If T is minimal and P(U) = 0 for some non-empty open set U then

X = U T™(U) and this is a contradiction because P(T™(U)) = 0 for all n.

Suppose P has full support. If 7" is not minimal then there is a proper
closed set C' such that T'C' = C. There is a probability measure @) on C which
is invariant for the restriction of T' to C. Let Q1(E) = Q(E N C) for all Borel
sets £ in X. Then Q o T~! = Q; and Q1 # P because P(C¢) # 0 = Q1(C°).
This contradicts the hypothesis.
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Theorem
TFE for a homeomorphism T of a compact metric space X :

n
1) % Z f(T*(x)) — c uniformly for some constant ¢ for each f € C(X)
k=0
2) 1 Z f(T*(x)) — ¢ pointwise for some constant ¢ for each f € C(X)
k=0

3) 4 Z f(T*(x)) — /fdP for each z, for each f € C(X) for some invariant

k=0
pm. P

4) T is uniquely ergodic
Proof: 1) implies 2) is trivial.

2) implies 3): let A(f) = lim * E f(T*(z)). [The limit is independent
n—oo
k=0

of z by hypothesis]. A is linear and continuous on C'(X) and hence there is
a complex measure P such that A(f) = /fdP for all f € C(X). Since A

is positive, P is a positive measure and since A(l) = 1, P is a probability
measure. Since A(f oT) = A(f) for all f € C(X) we see that P is invariant.

Since lim % Z foT¥* exists in L' [by Birkhoff’s Ergodic Theorem] the constant
k=0
¢ in 2) must be /fdP.

3) implies 4): suppose @ is an invariant measure. By 3), %Z f(T*(z)) —
k=0

/ fdP for each x and Dominated convergence theorem gives / fdQ = / fdP

for all f. Hence @ = P.
4) implies 1): this is Weyl’s Theorem.

Theorem

A rotation T'g = ag on a compact metric group G is uniquely ergodic iff it
is minimal.

Proof: since Haar measure has full support the theorem previous to above
theorem shows that unique ergodicity implies minimality. If 7" is minimal that
{a™ : n € N} is dense and, for any character v # 1, we have y(a) # 1

n—1 n—1
and 1 Z’Y(Tkx) — %Z’Yk(a)’Y(fﬂ) = %7:((&‘3):117(:1:) — 0 for all z. Thus,
k=0 k=0

if @ is an invariant measure then (since T is necessarily ergodic) / ~vd@ = 0 for

all characters v except 1. It follows that / vd@Q = / ~vdP (where P is the Haar

measure). Note that this holds for v = 1 also. Since characters span a dense
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subset of C'(X) we get /fdQ = /fdP for all f € C(X) and hence Q = P.
This completes the proof.

Remark: let G be a compact metric group and T : G — G be a continuous
automorphism. Then the Haar measure P and the measure §; are both invariant
and they are unequal so T is not uniquely ergodic (unless G = {1}).

Theorem
An affine transformation on a compact metric group G is uniquely ergodic
iff it is minimal.

Proof: we do not prove that ’if” part. This is available in "Minimal dynamical
systems with quasi-discrete spectrum", by Hahn and W. Parry, Jour. Lond.
Math Soc, Vol 40, pp 309-323, 1965

Now suppose T'g = aAg is uniquely ergodic. Then the unique invariant
measure is the Haar measure which has full support and hence T is minimal.

Remark: it has been shown that any i.m.p. ergodic transformation is isomor-
phic to a uniquely ergodic transformation. Thus, measure theoretically unique
ergodicity is not a useful concept!

Theorem [Birkhoff Recurrence Theorem]

Let ©Q be a compact metric space and T" be a homeomorphism of 2. Then
there exists w € 2 such that every neighbourhood of w contains T"w for infi-
nitely many n.

Proof: we know that there a minimal set , i.e. a non-empty closed set C
such that TC'=C and T : C' — C' is minimal. Every neighbourhood of a point
w of C contains T"w for infinitely many n. [w € C = {T"w :n € Z}~. If
{T"w : n € 7} is a finite set then T*w = w for some positive integer k; in
this case any neighbourhood of w contains T*/w = w for all positive integers
j. If {T™w : n € Z} is an infinite set it is clear that every neighbourhood of w
contains T"w for infinitely many n].

Isomorphisms and spectral invariants

Let (Q1,F1, Pr) and (Q9, Fa, P2) be probability spaces and T; : Q; — €; be
m.p. for ¢ = 1,2. We say 11 is isomorphic to Ty and write T1 T if there exist
sets E; € F;,i = 1,2 such that P;(E;) =1 (i =1,2) and

2) there exists a bijection ¢ : Ey; — Fs such that ¢ and (;5_1 are measurable
and ¢po Ty =Th 0 ¢.
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Note that if we replace E; by ﬂ TT'Eq and Ey by ﬂ T3 Eo then we
n=—oo n=—oo
have T;(E;) = E; (i = 1,2) instead of 1).
Note also that 171 15 = 17" 13" Vn.

Measure algebras and conjugacy:

Let (Q2,F,P) be a probability space. Let X be the set of all equivalence
classes [F] of sets F in F under the equivalence relation E”F if P(EAF) = 0.
X is a complete metric space under the metric d([E], [F]) = P(EAF). We can
define set theoretic operations on X in the obvious way. For instance [E]N[F] =
[E N F]. Countable unions, countable intersections and complements can be
defined similarly. We can define [P]([E]) = P(E). We call (X, [P]) a measure
algebra. For each [E] € X, Ig is a well defined element of L? (for any p). If T
is m.p. on (Q,F, P) then T7!: X — X can defined by T~Y([E]) = [T~}(E)].

Definition: let (Qq,F1, P1) and (Q2, F2, P2) be measure spaces and X,Y
be the corresponding metric spaces obtained by above construction. A map
¢ Y — X is an isomorphism of measure algebras if it is a bijection, preserves
countable unions and complements and [P1]¢([E]) = [P2]([E]) for all E € F.

Definition: T} and T are conjugate if there is a measure algebra isomorphism
¢:Y — X such that po Ty ' = T, 0 6.

Note that isomorphism implies conjugacy. It can be shown that the converse
is also true if the probability spaces involved are Lebesgue spaces, i.e. spaces
isomorphic to [0, 1] with Borel sigma field and Lebesgue measure together with
a countable number of atoms.

Definition: With above notations T} and T5 are spectrally isomorphic if there
is an isometric isomorphism W of L?(P,) onto L?(P;) such that W(f) o Ty =
W(f oTy) for all f e L?(P).

Theorem
If T7 and T» are isomorphic then they are conjugate and if they are conjugate
then they are spectrally isomorphic.

Proof: we only have to prove the second implication. Suppose there is
a measure algebra isomorphism ¢ : Y — X such that ¢ o T, = T Lo g
Define W : L?(Pp) — L?(Py) by Wi = Ir where ¢([E]) = [F]. (Note that
the indicators are not well defined pointwise but they are well defined as L?
functions). W extends to an isometric isomorphism of L?(P,) onto L?(P;) and
yields the desired spectral isomorphism.

Theorem

Let W : L?(P;) — L*(Py) be an isometric isomorphism. Suppose W (L (Py)) C
Le°(Py), W=L(L>®(P)) C L>®(P,) and W is multiplicative on L>(P,). Then
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there is an isomorphism ¢ of measure algebras with WIg = Ir where ¢([E]) =
[F].

Proof: we first observe that (WIg)? = WI% = Wig so Wi is an indicator.
Hence we can define ¢ by ¢([E]) = [F] where WIg = I. Itis easy to check that

¢ is a well defined bijection. Note that [P]([E]) = P(E) = /IEI;;dPg =<

Wig,Wlig >=<Ip,Ip >= P,[F]or [P1|¢([E]) = [P2]([E]). It remains to show
that ¢ preserves complements and countable unions. The equation Ig+Ige = 1
gives WiIg + Wlige = W1. Since W f = W1W f for all bounded measurable
functions f we get W1 = 1. Thus Wilg+WIg. = 1 so ¢ preserves complements.
[EWIg =1Ip and Wlge = Iy then Ip + Iy = 1 so [H] = [F]°]. To prove that
10} preberveb finite unlonb we use the identity Taup = I4 + Ip — I4Ip. Using the

fact that U Ap T U A, we get I » — I« in L? and this shows that ¢
k=1 k=1 A Ja
k=1 k=1
preserves countable unions. [Details are left to the reader].

Corollary
If W is an isometry such that W(L>(P)) C L*°(Py), WYL>(P)) C
L>°(P,) and W is multiplicative on L*°(P,) and if Up, oW = W o Up, then T}
and T, are conjugate.
A property of am.p. transformation which is preserved by isomorphism/conjugacy /spectral
isomorphism is called isomorphism/conjugacy/spectral invariant. Thus any spec-
tral invariant is a conjugacy invariant and any conjugacy invariant is an isomor-
phism invariant.

Theorem
Ergodicity, weak and strong mixing are spectral invariants (hence also con-
jugacy and isomorphism invariants).

Proof: T is ergodic iff {f € L? : foT = f} is one-dimensional. If W (f)oT} =
W (f oTy) ( as in the definition of spectral invariance) and T} is ergodic then
foly=fif W(f)oTy =W(f)if Wfe€{ge L?:goT =g} which shows
that {f € L?: f o Ty, = f} is one dimensional.

T is weak mixing iff it is ergodic and 1 is the only eigen value of Up. If
W(f)oT) = W(f oTs) then X is eigen value of T, and f is an eigen func-
tion corresponding to it iff A is eigen value of T5 and W f is an eigen function
corresponding to .

Suppose T3 is strong mixing and W(f) o Ty = W (f o T3) for some isometry
W. We have to show that < fo 19,9 >—< f,1 >< 1,g > for all f,¢. Since

this holds when f or g is a constant we may suppose [ f = [ g = 0. Since

Ty is ergodic and conjugate to T3 it follows that T5 is ergodic. W maps Th
invariant functions to T; invariant functions, so it maps constants to constants
and hence it maps the orthogonal complement of the space of constants to this
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space. Thus /Wf =0= /Wg. Now < foTJ g >=< W(foT3),Wg>=<
W(f)oT7',Wg >— 0 since T} is strong mixing.

Examples

Rotation on S! by a root of unity and rotation by a non root of unity are not
not spectrally isomorphic (hence not conjugate or isomorphic). This is because
the second one is ergodic and the first one is not. Also the second map is not
weak mixing. [ Tz = az has a an an eigen value and hence it does not have
discrete spectrum]. Thus this map is not spectrally isomorphic to any weak
mixing map.

Definition: an i.m.p. transformation T : Q — € is said to have countable
Lebesgue spectrum if L?(P) has an orthonormal basis of the type {1} U{UZLf; :
j=1,2,...,n €7}

oo

Example: let T be the (1/2,1/2) two sided shift on [[{-1,1}. Let go = 1
and gny no,...np ({@n}) = Gnyan,...an, for ng < ng < ... < ng, k> 1. We have
UTgnl,n2,~~~,nk({aﬂ}) = Oni+10ny+1---Onp+1 = Gni+1rna+1, o np+1- If we write
the collection {gn, n,,...n,} @s a sequence {f;} the the functions {1} U {UZf; :
j=1,2,...,n € Z} form an orthonormal basis for L?(P)

Let T and S both have countable Lebesgue spectrum. Let {1} U {URf; :
j=12,..,ne€Z}and {1} U{UZyg; : j = 1,2,...,n € Z} be the corresponding
bases. There is an L? isometry W which maps UR fj to Ugg; and such that
W(f)oT =W(foS) and hence T and S are spectrally isomorphic.

Theorem
If T has countable Lebesgue spectrum then it is strong mixing.

Proof: let {1} U{UZRS; : j = 1,2,....,.n € Z} be a basis. As m — 00, <
URUR fr, UL f; >—=< URfr,1 >< 1,ULf; >= 0. Now {f :< URf,ULf; >—<
fil><1, Uqlwfj > as m — oo} is a closed subspace of L? which contains the
basis {1} U{URf; : 5 = 1,2,...,n € Z}. Hence < URf,ULf; >—< f,1 ><
LULf; > as p — oo for all f. Now {g : Ul'f,g >—< f,1 >< 1,9 > as
m — oo} is a closed subspace which contains an orthonormal set so it is equal
to L2.

This proves the theorem.

We now consider m.p.t.’s with pure point spectrum (PPP) i.e. those for
which there is an orthonormal basis of L? consisting of eigen functions of Uz.

The following elementary facts about eigen functions may appear to be repet-
itive but we shall go through them nonetheless. Let T' be m.p. and ergodic. By
eigen values/eigen functions of T' we mean those of Uz in L?. If \ is an eigen
function with eigen value A then |A| =1 and |f] is a constant: the first property
follows by taking L? norms on both sides of foT = Af and the second property
follows from the facts that |f] is invariant and T is ergodic. Next we note that
eigen functions corresponding to different eigen values are orthogonal: foT =
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)\1f7gOT:)‘297)‘1 7é)\27f7é07g7é01mp]y that/[foT][goT]_ =< f?g>

(because T is m.p.) and /[foT][goT]’ = M[A]|” < f,g >= % < f,g >.

Also eigen spaces are one dimensional: if foT = Af,goT = Ag,f #0,9 #0
then 5 is invariant, hence constant. Finally we observe that eigen values form

a subgroup of S'.

Theorem [Discrete Spectrum Theorem due to Halmos and Von Neumann)]

Let T; be an ergodic m.p.t. on (£;F;, P;),i = 1,2 and assume that both
these have PPP. Then the following are equivalent:

1) Ty and T» are spectrally isomorphic

2) T} and Ty have same eigen values
3) T1 and T5 are conjugate

Proof: 1) implies 2) is trivial. 3) implies 1) by definition. 2) implies 1) is
straightforward: we get orthonormal bases index by the common eigen values
and this gives an isometric isomorphism of L? which is a spectral isomorphism.
2) implies 3) requires the following algebraic result proved earlier:

Lemma

Let H be an abelian group and K a subgroup of H such that k € K,n €
N = k = g" for some g € K. Then there exists a homomorphism ¢ : H — K
such that ¢ is the identity on K.

[ This is purely algebraic. We are asserting that K is an algebraic retract of

Proof of the lemma: let R = {(M,¢) : K < M < H¢: M — K is a
homomorphism with ¢ = identity on K}. (G; < G5 means G is a subgroup of
G2). This contains (M, ¢) if M = K and ¢ is the identity. Order this class by
saying (M1, ¢1) < (Ma, @) if My < My and ¢o|M; = ¢;. It is clear that any
totally ordered subfamily of R has an upper bound. By Zorn’s Lemma there is
a maximal element (M, ¢,). Claim: My = H. Suppose g € H\M,. Let M be
the group generated by My and g. We consider two cases:

Case 1: g™ ¢ My for any integer n. In this case M = {¢g"h : n € Z,h €
My} and the representation of elements of M in the form ¢™h is unique. Let
¥(g"a) = ¢y(a). This gives an element (M,v) strictly larger than (My, dy)
which is a contradiction.

Case 2: there is a least positive integer N such that g%V € M. Each element
of the group M is uniquely expressible as g"a where a € My and 0 < n < N.
There exists h € K such that ¢,(¢g") = h™. We define 1(g"a) = h"¢y(a).
Once again this gives an element (M, 1)) strictly larger than (M, ¢) which is
a contradiction.

we now prove 2) implies 3). Let ® be the group formed by the common eigen
values of T1 and Ts. Let {fy : A € ®} and {g) : A € @} be orthonormal bases of
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eigen functions. We may and do assume that |fy\| = 1 and |g,| = 1 everywhere.
We have Ur, (fx fu) = Mefafu and Uz, (fau) = Afau. Since eigen spaces are one
dimensional we see that fy, = c(\, p)frf, for some c(A, ) € S*. We use the
lemma above to reduce the proof to the case when c(A, ) = 1 for all A and p. Let
H be the the product (S')% (the collection of all functions from 7 : ; — S*)
under pointwise multiplication and G be the subgroup of constant functions. De-
note by h, the constant function h,(w) = a Yw. The hypothesis of above lemma
is satisfied, so we get a homomorphism 7 : H — G such that 7 is the identity
on G. If Fy = [7(fx)]” f then one can easily check that Fy, = F\F),. Hence we
assume hence forth that c¢(A, ) = 1 for all X and g and fr, = faf,. Similarly
we may suppose g, = gagy. There is an isometric isomorphism W from L2()
onto L?() such that Wgy = fy for all \. Note that W(gh) = (Wg)(Wh) for
all g,h € N, the vector space spanned by the functions {g) : A € A} L If we
prove that this equation holds for all L°° functions f and g we can obtain an
isomorphism of measure algebras from W as described earlier and we can then
conclude that 77 and T5 are conjugate. Let M the vector space spanned by the
functions fy. If g € L then there is a sequence {g,} C N such that g, — g
in L2. Tt follows that g,gx — ggx in L? and since W (g,gx) = W (gn)W (gx) for
each n we get W(ggx) = W(g)W(gx). [ We used the fact that convergence in L?
implies a.e. convergence for a subsequence]. In particular we have proved that
W(g)W (g9x)(= W(ggnr)) € L? for all g € L* for all \. Now let g € L°° and h €

L. There exists {h,} C N such that h, — h in L?. Now / W (g)W (h))* <

hm1nf/|W )P = hmmf/|W ghy) /|W gh))* < oo. Thus
W{(g) € L2 for all g,h € L>®. Next we take & € L? and choose a
sequence {gn} C N such that g, — ¢ in L?2. We get /|W( W(g)|? <

liminf/|W(gn)W(g)| 11m1nf/|W 9n9)| /|W (€9))? < oo. Tt fol-

lows that W(£)W(g) € L? for all £ € L?. This implies ( by a standard ar-
gument using Uniform Boundedness Principle) that W(g) € L*°. Thus W
maps L into itself. If g,h € L* choose {g,} € N and {h,} C N such
that g, — ¢ and h,, — h in L2. Since W(gnhm) = W(g)W (hm),gn — g in
L2, W (gn)W (hin) — W(g)W (hyn) in L? we get W(ghpy) = W(g)W (hm). Now
ghm — gh in L? as m — oo and W(g)W (hy,) — W (g)W(h) in L? in view of
the fact that W(g) € L. Hence W (gh) = W(g)W (h). This finishes the proof.

Theorem
Any ergodic rotation T'(g) = ag on a compact abelian metric group has pure
point spectrum. Eigen functions of T" are constant multiples of characters and

the set of eigen values coincides with {y(a) : v € G}.

Proof: we have v(Tg) = v(ag) = v(a)y(g) so v(a) is an eigen value with
eigen function 7. Since characters span a sense subspace of L? it follows that
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T has pure point spectrum. If foT = Af, f £ 0,A ¢ {v(a) : v € G} then f
is orthogonal to each character, hence to L?. If A = y(a) for some ~y then f is
a multiple of v because (by ergodicity) the eigen space corresponding to eigen
value 7(a) is one dimensional.

Theorem [Representation Theorem]
An ergodic m.p. transformation with pure point spectrum is conjugate to
an ergodic rotation on a compact abeliian group.

Proof: let A be the group of eigen values of the given transformation. Give
A the discrete topology. Let G be the dual group. Then G is a compact
abelian group under pointwise convergence topology. [ Think of G as a subset
of (S1)A. Pointwise convergence topology is the product topology relativized to
G. A straightforward argument show that G is closed in (S1)*. By Tychonoff’s
Theorem G is compact]. The inclusion map s : A — S* is a character and hence
it belongs to G. Define V : G — G by V(g) = sg. V is thus a rotation on

G. Suppose f is an invariant function for V. Let f = z < f,7; >, be the

Fourier series of f. Then < f,v; >= [y(s)]” < f,7; > so < f,7; >= 0 unless
7;(s) = 1. However v,(s) is an eigen value and < f,v; >= 0 except when this
eigen value is 1. This shows f is a constant and hence that V is ergodic. By
previous theorem V has pure point spectrum. 7T and S have the same eigen
values and hence they are conjugate by e Neumann Theorem.

Corollary

Any subgroup of S is the group of eigen values of an ergodic rotation on a
compact abelian group with pure point spectrum.

[ Such a rotation was constructed in the proof above].

TOPOLOGICAL ENTROPY

We write log for logarithm to base 2. Let X be a compact Hausdorff space.

Definition: the entropy h(U) of an open cover U of X is defined by h(U) =
log N (U) where N (U) is the smallest number of sets from the cover U required
to cover X.

In the following we write U; LIUy for the open cover consisting of sets of the
type AN B with A € Uy, B € Us. We say that Us is a refinement of U; if every
set in Us is a subset of some set in U;. We write U; < Us in this case.

Note that h(U) = 0 iff X € U. Also h(Uy) < h(Us) if Uy < Us. We claim
that h(U; UUs) < h(Uy) + h(Usz). This follows from the simple fact that if
{A;:1<i<n}and {B;:1<i<m} both cover X then so does the collection
{A;NB;:1<i<n,1<j<m} which has nm elements.

If T: X — X is continuous then h(T1U) < h(U) where T~ = {T ' A :
A €U}. If T is continuous and its range is all of X then h(T~U) = h(U).
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Theorem
If U is an open cover and T : X — X is continuous then lim %h(UI_IT_ll/[I_I
n—oo

L U T~ =DY) exists.

Proof: let a, = hUUT~ UL ... T~ DY), Then anqm < @y + ap. This
implies lim %an exists.

Definition: lim %h(u UT U U...uT- DY) is called the entropy of T

n—oo

relative to U and is denoted by h(T,U).

Note that h(T,U;) < h(T,Us) if Uy < Us. In particular this inequality holds
if Uy is a subcover of U;.

Now we note that since h(U U T U U ... 0 T~ DY) < nh(U) we have
R(T,U) < h(U).

Definition: the topological entropy h(T') of a continuous map T : X — X is
defined by

h(T) = sup{h(T,U) : U is an open cover of X }.

Note that h(T) = 0 if T is the identity map of X.

Claim: h(T) = sup{h(T,U) : U is a finite open cover of X}.

This follows from the fact that every open cover U has a finite subcover U;
and h(T,U) < h(T,U).

Theorem

Let T; : X; — X; be continuous maps for i = 1,2 (where X;, X» are compact
Hausdorff spaces). If T} and Ty are topologically conjugate then they have the
same entropy.

This is straightforward. We omit the details.

Another result proved by a routine argument is that the entropies of 1" and
T~! are the same.

We now state a few theorems on topological entropy and its relation to
entropy w.r.t. measures. We do not prove these theorem here. References for
the original articles containing the proofs of these results are available in Peter
Walter’s Ergodic Theory.

Theorem [L. W. Goodwyn]
The entropy of a homeomorphism w.r.t. a an invariant measure P does not
exceed the topological entropy.

Theorem [T.N.T. Goodman]
The topological entropy of T is the supremum of entropies w.r.t. all invariant
measures.

Theorem [ K. Berg]
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The topological entropy of an automorphism of a compact metric group
coincides with the entropy w.r.t. Haar measure.

Theorem [Bowen)]

If {T} : t € R} is a group of homeomorphisms of a compact metric space X
then h(Ty) = |t| h(T}).

KAKUTANI TOWERS AND ROKHLIN’s LEMMA

Let (Q, F, P,T) be a dynamical system. Assume that T'isi.m.p.. If {B, T(B), ..

are disjoint we call this collection a column with base B and height N. We call
TN=Y(B) the roof of the column and BUT(B)U...UTY~1(B) the carrier of
the column.

A (Kakutani) tower is a countable collection of disjoint towers. Let T
= { C1,Cq,...} where Cy = {By,T(Bk),...,TN*"Y(By)},k = 12, ...are disjoint
columns. The set Ur = UUCk where Ue, = B, UT(Bg) U ...UTNe"1(By) is

the carrier of the tower 7 k Its base is the union of the bases of its columns,viz.
B=DBiUByU.... Its roof is TM~1(By) UTN2"1(By) U ..... A set of the type
{T*(x):0 <k < Ny(x)—1} where Ny () is the height of the column containing
x is called a fibre.

Theorem [ Rokhlin’s Lemmal]

Let (2, F, P) be a probability space and T : Q — Q be i.m.p. and ergodic.
Assume that P is non-atomic. Given N € N and € > 0 there exists a measurable
set B such that B, T(B), ..., TV ~1(B) are disjoint and carrier of this column has
measure > 1 —e.

Proof: let C' be any measurable set with 0 < P(C) < . [ This is the
only place where non-atomicity of P is used. We remark that this property
may hold even in purely atomic spaces; for example P{n} = 5~ in N]. Let
To(x) = min{n > 0 : T"z € C}. This is finite a.e. on C by Poincare’s
recurrence Theorem. Let By, = {z € C : 7¢(x) = k},k = 1,2,... and let
Cx = {Bi,T(Bg),...,T*"1(By)}. Display these sets as a column of disjoint
sets. | The sets in these columns are disjoint: if x € T%(By) N TV (By) with
0 <i<j<kthenT 'z and T~/ both belong to By, which implies 7¢(T~‘x) =
7¢(T~7z) = k. This is a contradiction because 7¢(T~'z) =i — j + 7¢(T 7).
This proves that Cy, is a column. Suppose z € T*By, NT7(B,,) with 0 <i < k
and 0 < j < m. Suppose i < j. Let u = T 'z and v = T 7z so that
uw € B, C C,v € B,,. Since T9"%0 = u € C and v € B,, we must have
m < j — i. This is a contradiction because j —i < j < m. Similarly if j < ¢
and z = T~ Jx we can see that z € C and hence T~ (T~x) € C which implies
k <i—j < i < k a contradiction. Thus, we must have ¢ = j. But then
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T 'z € B, N B,,, = () unless £ = m. Thus we have constructed a Kakutani
tower.

Now we divide Cj into blocks of size N starting from the base. [There will
be some sets, not exceeding (N — 1)) which are not included in these blocks.
Pick the first set in each of these blocks and let B be the union of these sets.
Clearly B, TB, ..., TN~1(B) are disjoint. Note that 7 maps the union g of all
the sets in the tower into itself and hence Qg has measure is 1.[ If z € T%(By,)
with i < k — 1 then Tx € T (By,) C Qo and if # € T*~1(By) then Tx € B =
UBk C Q. Thus Ty C Qo and this implies P(Q) = 1]. Now the union of

N B,TB,...,TN=1(B) covers all of this set of measure 1 except for the sets are
outside the blocks we have marked in each column. Since T is m.p. the sets in

the columns have the same measure and so the the leftover part of each column
has measure not exceeding NP(By). Thus P{(BUTBU ... UTN"Y(B))} <

NZ P(By) = NP(C) < e. This completes the proof.
k

Ergodic theorem in a Banach space

Theorem
Let X be a Banach space and T : X — X be a bounded operator. Let
n—1
S, = % Z T%. Assume that
k=0

1) sup ||S,|| < o©

2) LT - 0asn — oo
Then {S,x} converges in the norm of X as n — oo for all  such that {S,z}
has a weakly convergent subsequence.

Proof: clearly, (I —T)S, = S,(I —T) = L(I—1T™). By 2) |(I - T)S,|| =
||Sn(I —T)| — 0.

n—1

We have [ — Sy, = LY (I = T%) = (I - T)1 Y " kS

k=0 k=0
Let Sy, — y weakly. We claim that T'y = y. We have T'S,,,x — T'y weakly
and (I — T)S x — y — Ty weakly because T is weak-weak contmuous Thus
|z* (y )—x (Ty)| = lim |2*(I — T)Sn,z| < limsup ||lz*| ||lz|| (1 — T)Sx,|| = 0.
Since x* is arbitrary we get y = Ty Let z=x —y. Then S,z = Sp,z — S,y =
n;j—1
Spw —y s0 Sp,z2 — y —y = 0 weakly. Now z — S"ng (I - T ZkSk S
k=0
(I —T)(X). Thus z belongs to the weak closure of the range of (I —T). Let

€ > 0. Since the weak closure coincides with the original closure we can find
u € X such that ||z — (I —T)u|]| < e. Now ||Sp,(I —T)ul| — 0 and ||Spz| <
1Sn(z — (I = T)u) ||+ |Sn(I = T)u|| < Ce+||Sn(I — T)u|| where C = sup ||Sy,]|.
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This proves that ||S, 2| — 0. Thus ||S,z — S,y|| — 0 which means ||S,z — y|| —
0, i.e. S,z — y in the norm.

Remarks: the condition that {S,z} has a weakly convergent subsequence
is satisfied automatically if X is separable and reflexive (by Banach Alaoglu
Theorem). In particular this holds if X is a separable Hilbert space.

Let (92, F, P,T) be a DS with F countably generated. Then L?(P) is a sepa-
rable Hilbert space. Define U : L? — L? by U(f) = f oT. Then the hypothesis

n—1
of above theorem are all satisfied and we can conclude that lim %Z foTk
n—oo
k=0

exists in the norm of L? for each f € L2. Hence we can view above theorem as
a generalization of von Neumann’s Ergodic Theorem to Banach spaces.
When X = L1(Q, F, P) we have the following theorem:

Theorem
Let (Q,F, P) be a probability space and X = LY(Q,F, P). Let T: X — X
n—1
be a bounded operator such that the operators S, = % Z Tk n=1,2,... map
k=0

L into itself. Suppose the norms of these operators are bounded both as
operators on L' and as operators on L. Then {S,f} converges in the norm
of X for every f € X if and only if % — 0 as n — oo for every f € X.

We omit the lengthy proof of this theorem. [ See "Linear Operators" by
Dunford and Schwartz, Part I, p 662 (Corollary 5) for a proof].

Suppose T is a measurable map on (£2, F, P) but T is not measure preserving.
When does the map f — foT map L' into L' and when is this linear map
bounded? We have the following;:

Theorem

Let 1 <p < oo. Then f — foT is a bounded operator on LP? if and only if
there exists C' € (0,00) such that P(T~(E)) < CP(FE) for all meaurable sets
E and foT € LP for all f € LP.

Proof: suppose there exists C € (0,00) such that P(T~}(E)) < CP(E)
for all £ and foT € LP for all f € LP.. We first observe that f = g a.e.
implies foT = goT ae. [If f(w) = g(w) for w € A where P(A°) = 0 then
P(T71(A%) < CP(A°) =0 and f(T(w)) = g(T(w)) if w € T71(A)]. Next we
show that f — foT is bounded. For this we apply the Closed Graph Theorem.
If f, = fin L? and f,, oT — ¢ in LP then we can find integers n; T oo such
that f,, — f ae. and f,, oT — g ae. If f, (w) — f(w) for w € B with
P(B¢) = 0 then P(T~Y(B¢)) = 0 and f,, (T(w)) — f(T(w)) for w € T7Y(B).
Thus f,, oT — foT ae. and f,, o1 — g a.e. implying that g = foT a.e.
This proves that f — f o T is a bounded operator on LP. Conversely, suppose
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f — foT is a bounded operator on L?. Then /(IE oT)PdP < C/IEdP where
C is the norm of the operator f — foT. Thus P(T~*(E)) < CP(E).

Remark: if the map f — foT is a bounded operator on L? for some p then
it is so on every L%; it maps positive functions to positive functions and L
functions to L> functions. In "Ergodic Theory of Markov Processes" by Shaul
Foguel the basic object of study is a bounded operator on L' which is positive
and has norm < 1. This book also contains theorems on existence of invariant
measures proved using properties of such operators. A number of conditions
equivalent to the existence of an 'invariant measure’ for such an operator which
is equivalent to P are given.

Theorem [ Pointwise Ergodic Theorem in L!]
Suppose U is an operator of norm at most 1 on L'(= L'(Q,F, P)) which
n—1

also acts as an operator of norm at most 1 on L*°. Then lim % Z Uk f exists
k=0
a.e. for every f € L1,
Ref. Theorem 6, page 675 of Dunford and Schwartz, Part I.

APPENDIX

Existence and uniqueness of Haar measure

[Ref.: Measure Theory by Cohn]

Throughout G is a locally compact Hausdorff topological group. Our interest
is mainly in compact metric groups, but we prove the existence theorem in the
case of locally compact groups.

Theorem

If f: G — C is continuous and has compact support then f is left and right
uniformly continuous.

The proof is left as an exercise.

Theorem
Let p be a regular Borel measure on G. If f: G — C is continuous and has

compact support then z — /f(a:y)du(y) and z — /f(y:c)du(y) are continu-
ous.

Proof: exercise.

Theorem
Any open subgroup H of G is closed.
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Proof: we have G\H = U (xH) which is open.
Theorem
There exists an open (hence closed) subgroup of G which is c— compact.

Proof: there exists U open such that e € U and U is compact. There
exists a symmetric open set V such that e € V. C V C U. Let V; =V, Vo =

VV,.yVig1 =V"V, ... Let £ = U V.. Clearly F is an open subgroup of G.

n=1

It follows that F is a also closed. Note that ‘;n is compact and ‘;n C E. Thus
F is 0— compact.
We use the following notations: . f(y) = f(z71y).fo(y) = f(yz~1).

Theorem
Haar measure on G exists.

Proof: let K C G be compact and A C G have non-empty interior A°.
n
The K C UmAO and so there is a finite set {1, 22, ..., 2, } with K C U x; AC.

x i=1
Let N(K, A) be the smallest integer n for which such a finite set exists. [ Set
N(K,A)=0if K =(]. Let Ky be a fixed compact set with non-empty interior.
For each open set U containing e and each compact set K define ¢y (K) =

Ny We note that 0 < ¢ (K) < N(K, Ko), 6y (Ko) = 1, ¢y (K) < dyy (K)

if K ¢ K',¢py(KUK') < ¢y(K) + ¢y(K') and equality holds in this last

inequality if KU' N K'U~! = (. [ For the last part let K UK’ C Uin
i=1

where n = ¢ (K U K'). Assume that a;U intersects K U K’ for each i. Since

, KUT'NK'U™! = 0, for each i either z;UNK = 0 or ;U N K’ = §. Thus

{z1, 22, .y xn} = {z; : 1, UNK = 0}U{x; : z,UNK’ = (}. Note that K C Uin
J
and K' C Uin where I = {x; : ;;UNK = 0},J = {z; : z,UNK' = 0}. Since
I

I and J are disjoint we get N(K,U)+N(K',U) < #(I)+#(J) = N(KUK',U)].
This proves that ¢, (K UK') = ¢y (K) + ¢y (K') if KUT'NK'U™ = (). Let
Ix = [0,N(K,Kp)] and X = HIK the product taken over all compact sets
K. With the product topology X is compact. Note that ¢, € X for every
open set U containing e. If V is open and e € V let Sy = {¢y, : U C V,U
open, e € U}~ .We claim that ﬂSv , where the intersection is over all open
sets V' containing e, is non-empty. Since each Sy is non-empty and compact
we only have to verify finite intersection property. If V1, V5, .., V,, are open sets
containing e then ¢y, ~y, v, belongs to each of the sets Sy, 1 < i < m.

We have proved the claim. Let ¢ € ﬂSV. We claim that for any compact
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sets K, K’ and any © € G we have: ¢(K) > 0,¢(0) = 0,¢(Ko) = 1,¢(zK) =
H(K),(K) < ¢(K") if K C K',¢(K UK') < ¢(K) + ¢(K') with equality if
KN K'=10. After proving this claim we define p*(U) = sup{¢(K) : K C U, K
compact} for U open, p*(A) = inf{p*(U) : A C U,U open}; we show that p* is
an outer measure on the power set of G, that each Borel set is p* measurable
and that the restriction of p* to the Borel sigma field is a left Haar measure on
G.

Proof of the claim: we only have to prove that ¢(K; U Ks) < ¢(K1) + ¢(Ka)
with equality if K3 N Ky = (. The map 6(h) = h(K1) + h(K2) — h(K; U K>3)
is continuous on X. Since ¢y (K1) + ¢y (K2) — ¢y (K1 U Ka) > 0 it follows
that 6 is non-negative at each point of Sy for any open set V containing e.
Hence 6(¢) > 0 which proves the first part of the claim. Now let K1 N Ky = (.
There exist disjoint open sets Uy, Uz such that K1 C Uy and Ky C Us. [ This
separation result holds in any Hausdorff space!]. We can find open sets V1, V;
containing e such that K1V; C Uy and KoVo C Us. [ If € K there exists
neighbourhoods S,, T}, of e such that S, C U; and T,,T, C S,.. By compactness
Ky C 21T, UzoT,, U ..Uz, T, for some finite subset {z1, 23, ..., 2, } of K. Let
Vi=T, NTy,N...NT,, . Any point of K;V; belongs to x,1,,T,, for some ¢ and
2Ty, Ty, C xSz, CUL. Let V.=V3NVa. Since K1V NEKV C KiVi N KV C
UrNUs = 0 we get ¢y (K1 U Ka) = ¢y (K1) + ¢y (K2) whenever U is open,
contains e and is contained in V1. [ Because K1U ! N KU ! = ()]. The map
0 above is 0 on points of the type h = ¢;. Hence it is 0 on each Sy and so it is
0 at ¢. This proves the claim.

Now we study p* defined by p*(U) = sup{¢(K) : K C U, K compact}
for U open, p*(A) = inf{u*(U) : A C U,U open}. If U, is open for each n
then ,u*(U U,) < Z,u*(Un). To see this take any compact set K C UU"'

n

N
We have K C U U,, for some N and there exist compact sets K1, Ks,..., Ky
n=1
N
with K; C U; for each ¢ and K C U K,. [ It is enough to prove this when
n=1

N = 2 since the general case follows by induction. There exists an open set W

such that K\Us C W € W C Uj. Take K; = W and K> = K\W]. Hence
N N

oK) < ng)(Ki) < Zu*(Ui) < Zu*(Un). Taking supremum over K we
i=1 i=1 n

get u*(U U,) < Z,u*(Un). Now let A,,n = 1,2... be arbitrary and € > 0.

There exist open sets U, with A, C U, and p*(A,) + 55 > p*(U,). Now
u*(U Ap) < ,LL*(U U,) < Z,u*(Un) <€+ Zu*(An). It follows that p* is

indeed an outer measure.
Our next claim is that p*(V) > p*(V N U) + p*(V NU®) for any open sets
U and V with p*(V) < 0.
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Once this claim is established we can see easily that every open set if p*
measurable: let p*(A) < oo and € > 0. There is an open set V such that
pw*(A) +e> p*(V)and A C V. Thus p*(A) +e > p*(VNU) +pu*(VNUS) >
p(ANU) + p*(ANU®). Thus and sub-additivity show that u*(A) = p*(AN
U)+ p*(ANU*®). Now we prove the claim. There exists a compact set K such
that K CUNV and ¢(K) > p*(UNV) —e. There is a compact set H C V\K
such that ¢(H) > p*(V\K) —e. Note that K N H = ). Also V\U C V\K so
¢(H) > p*(V\K) —e > p*(V\U) — €. Hence p*(VNU)+ p*(VNUS) -2 <
O(K)+ ¢(H) = ¢(HUK) < p*(V). It follows that every open set, and hence
every Borel set, is p* measurable. Let p be the restriction of p* to the Borel
sigma field.

We now prove that p is left invariant: the fact that ¢(zK) = ¢(K) shows
that p*(2U) = p*(U) and hence p*(zA) = p*(A). [Here K,U, A are typical
compact, open and arbitrary subsets].

This finishes the proof.

Remark: it can be shown that pu is regular. However this doesn’t require a
proof if the group G is a locally compact Polish space and this is the case we
are interested in. (In fact we are interested only in compact metric groups).

Theorem

Left /right Haar measure on a locally compact Polish group G is unique up to
a constant. If G is a compact metric group then there is a unique Haar measure
which is also a probability measure.

Proof: let p and v be two left Haar measures. Let g : G — C be a
non-negative continuous function with compact support which is not identi-
cally 0. Let f : G — C be a continuous function with compact support. We
first show that pu(U) > 0 for any non-empty open set U. Since p is regular
there is a compact set K with pu(K) > 0. [ By definition a Haar measure

is not identically 0!]. Since K C U xU there is a finite subcover. Suppose
zeG

K C U x;U. Clearly, u(xz;U) > 0 for some i and hence p(U) = p(z;U) > 0.

i=1

We can now conclude that /gdﬂ > 0. [ g > 0 on some non-empty open

/fdu

set]. For the first part of the theorem It is enough to show that / =
gdp

/fdl/

/7. If ¢ is the continuous complex function with compact support on
gdv
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G x G defined by &(z,y) = L2902 ¢ follows that //§ (z,y)dv(y)du(x) =
g(zz)dv(2)

//éylxydu )dv(y //Eylwydl/ Jdp(x //f (y)dpu(z)

we have changed y to zy to get the last equality) and hence that / fdu =

/ gdu / / dv(y). [ The function ¢ defined here is obviously contin-
g(zy—1)dv(z)

uos on G x G; its support is contained in C' x DC~! where C and D are the

/fdﬂ

gdp

supports of f and g respectively]. We have proved that does not depend

on p proving that first part of the theorem. If G is compact then p(G) and v(G)
are finite and hence ﬁ = ﬁ proving that there is a unique left invariant
probability measure in this case.

If G is compact then the unique left invariant probability measure is also the
unique right invariant probability measure. We shall not prove this here since
our interest is mainly in abelian groups.

END OF APPENDIX

APPENDIX
ANALYTIC SETS AND ISOMORPHISM THEOREMS
Borel isomorphism and analytic sets [ From Cohn’s "Measure Theory"]

A Polish space is a topological space which can be metrized to become a
complete separable metric space.

It is well known fact that a subspace of a Polish space is a Polish space iff it
is a Gg set.

A subset A of a Polish space X is called analytic if it is the continuous image
of a Polish space.

Theorem
Open sets and closed sets in a Polish space are analytic.

Proof: open subsets and closed subsets are themselves Polish.

Theorem
Countable unions and countable intersections of analytic sets are analytic.

Proof: let f, : Z, — A, be continuous and onto where Z,, is a Polish space.
Let Z = U(Z” x {n}) and declare that a set B C Z is open if, for each n,
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BN (Z, x{n}) = U, x {n} for some open set U,, in Z,,. This defines a topology
on Z. Let d, be a metric for the topology of Z,, which makes it complete
and separable. Assume (w.lo.g.) that d,, < 1. Define d(z1,22) = d,(x,y) if
z1 = (x,n) and 2o = (y,n) and define d(z1,22) to be 1 if 21, zo are not of this
type. Then (Z, d) is complete and separable and the map ¢ : Z — U A,, defined
by ¢((x,n)) = fn(x) is a continuous surjective map. This proves that UA” is

n

analytic. Now let H = H Z, and define D({z,}, {yn}) = Z 57 115(%

(H, D) is a complete separable metric space and K = {{xn} e H: folzy) =
fi(z1)} is a closed subset of H. Hence K is a Polish space and the range of the

map {x,} — fi(x1) is ﬂ A,,. Hence n A, is also analytic.

Theorem
Every Borel subset of a Polish space is analytic.

Lemma:

Let (X,7) be any Hausdorff topological space. The smallest class of sets
containing all open sets and all closed sets closed under countable intersections
and countable disjoint unions coincides with the Borel sigma field.

Proof: let B be the class mentioned in the statement. Let By = {A € B :
A° € B}. If {A,} C By then | JA, = A1 U (A5\A1) U (43\{4; U A5}) U

a disjoint union of sets in B anrcll hence it belongs to B. Since B is closed under
complementation also it is a sigma field. Since it contains open sets it contains
all Borel sets. The Borel sigma field is therefore contained in B. Since the Borel
sigma field also satisfies the properties satisfied by B it follows that B C Borel
sigma field.

The theorem follows immediately: the class of analytic sets also satisfies
above properties and hence it contains B, which is the same as the Borel sigma
field.

Theorem
Product of analytic sets is analytic.

Proof: let A, be an analytic set in a Polish space Z,, for n = 1,2,.... We

have to show that H A, is an analytic set in the Polish space H Z,. Define

n=1 n=1
I H Z, — H A, by f({zn}) = (fu(zn)) where f,, : Z, — A,, is continuous
n=1 n=1
and onto. - -
This map is continuous and the image of H Z,, under it is H A,.
n=1 n=1
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Theorem

Let X and Y be Polish and A C X analytic. Let f : A — Y be Borel
measurable, A; be analytic in X and Ay be analytic in Y. Then f(AN A;) and
f71(As) are analytic.

Remark: taking A = X we see that images and inverse images of analytic
sets under Borel measurable maps are analytic.

Proof: let mo(z,y) = y V(z,y) € X x Y. We claim that the graph Gy =
{(a, f(a)) : a € A} of f is a Borel subset of A x Y. Indeed (a,y) — ((f(a),y) is
Borel measurable from A XY — Y x Y and the graph of f is the inverse image
under this map of A = {(y1,42) €Y XY :y1 = y2}. Hence Gy = (AXY)NB
for some Borel set B in X xY. Now GyN(A; xY) is an analytic subset of X xY
because it is the intersection of two analytic sets. Let £ : Z — Gy N (A1 xY) be
continuous and onto where Z is a Polish space. Now (w2 0&)(Z) = f(AN Ay)
and hence this last set is analytic. Now let m1(z,y) = . The set Gy N (X x Asg)
is an analytic set in X x Y and f~1(A2) = m1(Gf N (X x Az)). Hence f~1(As)
is analytic.

Theorem
Any Polish space is the continuous image of NV (with product topology).

Proof: recall that NV is complete and separable under the metric d({ny}, {my}) =

o0

Z 2%% d({ni},{mk}) < 35+ implies that (the first N terms in the
k=1

sum are necessarily 0) and n; = m; for 1 < j < N. Let d be a complete
separable metric for a Polish space X. With each finite sequence (ni,na, ..., )
of positive integers we associate a set C'(ny,na,...,nx) in such a way that each

of these is a non-empty closed set, the diameter of C(ny,ns,...,n;) does not

o0 o0
exceed 1/k, C(ny,ng,...,np—1) = U C(ni,ng,....,ng—1,7) and X = U C(ny).
j=1 ni=1
[To see that such sets exists we take a countable dense set {x,} and define
C(j) to be the closed ball with center x; and radius % Suppose we have
constructed C(ny,na,...,nx). We can write this set as a union of a count-
able number of closed balls of radius m each and we denote these balls
by C(n1,n9,...,nk,5),7 = 1,2,.... This completes the construction]. Now let
{n1,na, ...} be an element of N¥. Then the intersection of the sets C(n1,na, ..., nx)
over k is a singleton set {x}. we consider the map {ni,ns,...} — x from NV
into X. It is clear from the properties of the sets C(ny,na, ..., nk) that this map
is onto X.

Suppose z and y are the images of {ny} and {mi} and d({ng}, {mi}) <
QN%. Then n; = m; for 1 < j < N. In particular z and y both belong to
C(ni,ng,....,nn) = C(mi,ma,...,my) which implies that d(z,y) < % This
proves continuity of the map {ni, ng, ...} — x. This completes the proof.
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Corollary
If A is a non-empty analytic set in a Polish space X then A is a continuous
image of NV,

Proof: this is obvious from the definition of analytic sets and above theorem.

Theorem
Let X be Polish and A C X. Then A is analytic if and only if there is a
closed set C' in NN x X whose projection (on the second coordinate) is A.

Proof: ’if” part is obvious. Suppose A is analytic. By above corollary there
is a continuous map f from NN onto A. The graph G ¢ of fis a closed subset
of NN x X and its projection on the second coordinate is A.

A topological space is zero dimensional if there is a basis consisting of clopen
(i.e. closed and open) sets. Discrete spaces and subspaces/products/disjoint
unions of zero dimensional spaces are zero dimensional. NN and {0, 1} are zero
dimensional.

Theorem
If X is Polish and A is a Borel set in X then there is a zero dimensional
Polish space Z and a continuous one-to-one map f : Z — X with f(Z) = A.

o0

an

271
n=1
space {0,1} onto [0,1]. Restricting it to sequences with infinitely many 1’s
together with the point {0,0,...} we get a continuous injective map of a zero
dimensional space onto [0,1]. Also the domain of this restriction is a Gs in
{0,1} ( since a countable set is an F,) and hence it is Polish. This proves
that [0,1] is a continuous injective image of a zero dimensional Polish space Z.
It follows that [0,1]" is a continuous injective image of the zero dimensional
Polish space Z. | Because a product of zero dimensional Polish spaces is a
zero dimensional Polish space]. Let x : ZY — [0,1]Y be a 1-1 continuous map
with range [0,1]N. Now let X be a Polish space. X is homeomorphic to a
subspace of [0,1]N. [ If {z,} is dense in X and d is a complete metric with
d(z,y) < 1 for all z,y then 2 — {d(x,x,)} is the desired homeomorphism].
The range of this homeomorphism is Polish and hence it is a G in [0, 1]". Let
¢:X — S C[0,1]N be ahomeomorphism ( onto S) where S is a G in [0, 1]V.
Now x~1(9) is a G5 in ZN (because S is). Thus, x~1(S) is Polish and zero
dimensional. Note that ¢~ '(x(x~(S))) = X and ¢ ' o x is continuous and
one-to-one. This proves the theorem when A = X. Consider the class G of all
Borel sunsets of X that are continuous one-to-one images of zero dimensional
Polish spaces. All open and closed sets in X belong to this family. We claim
that countable intersections and countable disjoint unions of sets in G belong
to G. Once this is proved we can conclude that G contains every Borel set and

The map {a,} — is a continuous map of the zero dimensional
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the proof of the theorem would be complete. Let {A,} C G. Let Z, be a
zero dimensional Polish space and f, : Z,, — A,, be one-to-one, continuous and

onto. Let A = {{z,} € HZ‘” : fn(zn) = fi(z1) Vn} and define f : A — X
by f({zn}) = fi(z1). This gives a one-to-one continuous map of A onto mA"

n

and hence ﬂAn e g If Z, = U(Z” x {n}) is the ’disjoint union’ of Z/ s

n n
(see the proof of the fact that disjoint union of analytic sets are analytic for
details) and if f : Zp — X is defined by f(z, x {n}) = fn(z,) then we get
a one-to-one continuous map of Zy onto U A, provided A/ s are disjoint and

n

hence U A,, € G in this case.
n

Lemma

Let X be a zero dimensional separable metric space and U be an open subset
which is not compact. Let ¢ > 0. We can find an infinite sequence of disjoint
clopen (non-empty) sets Ap, Ag, ... each having diameter less than e such that

U=]JAn

Proof: let {U; : i € I} be an open cover of U with no finite subcover.
Consider the collection G of all clopen sets which are contained in some U; and
which have diameter less than €. Every point of U lies in an open ball of radius
less than €/2 contained in U N U; and there is a clopen set containing the point
and contained in this open ball. Hence U coincides with the union of all the
members of G. By separability we can write this union as a disjoint union, say

U Vi Writing this union as V3 U (Vo\V1)...(V,\{V1 UVoU..UV,_1})U... we

see that U is the union of disjoint clopen (non-empty) sets each having diameter
less than e. Note that each of these clopen sets is a subset of some U;. Since
{U;} has no finite subcover our collection {A,} is necessarily infinite.

Lemma

Let C be the set of all condensation points ( i.e. points such that every
neighbourhood of them is uncountable) of a separable metric space X. Then C
is closed and X\C' is at most countable.

Proof: let {U,} be a countable basis for X. Note that = ¢ C iff B(z,r) is
countable for some r iff there exists U,, such that 2 € U,, and U,, is countable.
In this case every point of U, is also in X\C and hence X\C is open and C
is closed. It is also clear that X\C is a (countable) union of countable sets U,
and hence it is countable.

Theorem
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Let X be Polish and B be an uncountable Borel subset. There exists a
continuous one-to-one map f : N¥ — X whose range f(NV) is contained in B
such that B\ f(NY) is at most countable.

Proof: there exists a zero dimensional Polish space Z and a continuous
injective map g : Z — X whose range is B. We claim that there is a continuous
injective map ¢ : NN — Z such that Z\¢(NV) is countable. Once this is proved
the function f = go ¢ has the desired properties. The set C of all condensation
points of Z is Polish and zero dimensional. Also Z\C is countable. Note that
every point of C' is a condensation point of C. [ Because Z\C' is countable]. Let
d be a complete metric for C. We construct sets A(ni,na,...,ng) for £ > 1 and
nis € N as follows: Let U be obtained from C' by removing one point. Clearly
U is open and non-compact. By one of the lemmas above U is the union of
an infinite sequence of disjoint sets each of which is non-empty and clopen and
has diameter less than 1. Call these sets A(n1),n1 = 1,2,.... Note that each
point of A(n;) is a condensation point of it. [ This is because these sets are
open: if z € A(n;) and V is an open set containing x then A(nq) NV is also a
neighbourhood of = and so it contains uncountable many points of C]. We can
repeat this construction by replacing C by any of the sets A(n1). By an induction
argument we can construct sets A(ny,ng,...,n;) with the following properties:
these sets are clopen nonempty, diameter of A(ny,na,...,nk) is less than % and
A(ni,na,...,ng) is the union of A(nq,na, ..., nk, nk4+1) together with a singleton.
Define h : NN — Z by h({ny}) = z where {2} = ﬂA(nl,ng, wy ). 1t is easy

k
to see that this map is injective and continuous. Also h(NY) C C and C'\h(NV)
contains only the points removed in the construction of the sets A(nq, na, ..., ng).

Corollary
Any uncountable Borel subset B of a Polish space X contains a homeomor-
phic copy of {0, 1}%.

Proof: There is a continuous injective map f : N¥ — X whose image is
contained in B. Restriction of f to {0, 1} gives the required homeomorphism.

Definition: let X be Polish. A subset A of NN x X is universal for a family
of subsets of X is every set in the family is a section of A.

Lemma

Let X be a separable metric space. There is an open A set in N¥ x X which
is universal for the class of all open sets in X. Also, there is a closed C set in
NN x X which is universal for the class of all closed sets in X.

Proof: consider {0, Vi, Vs, ...} where {V1,V5,...} is a basis for X. Let A =
Ut{n.ne, .12} iz € Vi, )
k
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= U{A(k,n) x V. } where A(k,n) = {{{ni,n2,...} € N¥:n, =n}. Since
k
A(k,n) is open it follows that A is open. If

{ni,mna,...} € NN then the section of A by {ni,no,...} is UVW and these

k
unions exhaust all open sets in X. A€ is a closed set whose sections exhaust all
closed sets in X.

Theorem
If X is Polish then there is an analytic set A in NN x X which is universal
for the class of all analytic sets in X.

Proof: there is a closed subset C' of N x NN x X which is universal for
the class of closed sets in NN x X. Let A = ¢(C) where ¢ : NY¥ x NN x X —
NN x X is defined by ¢({m1,ma,...},{n1,na,...},z) = ({m1,ma,...},z). Being
a continuous image of a Polish space A is analytic. For each {my,mas,...} the
section of A by {mi,ms, ...} is nothing but the projection on X of the section
of C by {mq,ma,...}. Recalling that analytic sets in X are precisely projections
of closed sets in N¥ x X we conclude that A is universal for analytic sets.

Theorem
There is an analytic in NY set which is not Borel.

Proof: let A be an analytic set in NN x N¥ which is universal for the class of
all analytic sets in X. Let S = {{n1,n2,...} : {n1,n2,..., },{n1,n0,...}) € A}.
This is the projection on NN of ANA where A is the diagonal of N¥ x NN, Since
A is closed it follows that S is analytic. Suppose S is Borel. Then so is S°¢.
Thus S¢ is analytic and it must be a section of A. Let {my,ms,...} € NN be
such that
S¢ = {{nl,n2, } : ({ml,mg, }7 {’I’Ll,TLQ, }) € A} (*)
Either {m,ma, ...} € Sor {my,ma,...} € S°. In the first case ({m1,ma, ..., }, {m1,ma,...}) €
A which implies {m1,ma,...,} € S¢ by (*). In the second case {mi,ma,...} €
S¢ = {{n1,ne,..} : ({m1,ma,..},{n1,n2,...}) € A} and so ({mq, ma, ...}, {m1, ma,...}) €
A and the definition of S shows that {mi, ma,...,} € S, a contradiction again.

Theorem
Any uncountable Polish space has an analytic subset that is not Borel.

Proof: let A be an analytic set in N¥ which is not Borel. Suppose X is Polish,
uncountable and every analytic subset of X is Borel. There is a continuous
injective map ¢ : N¥ — X such that X\¢(NY) is at most countable. ¢(A)
is analytic and hence Borel. It follows that A = ¢ *(¢(A)) is Borel too, a
contradiction.

In particular not every analytic subset of R is a Borel set.

We now prove a separation theorem for analytic sets and use it prove a Borel
isomorphism theorem.
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Let X be a Polish space and A, Ay C X. If there exist disjoint Borel sets
By, By such that A; C B;.i = 1,2 we say Ay and A, are separated by Borel sets.

Theorem
Disjoint analytic sets in Polish space can always be separated by Borel sets.

Proof: claim 1: if C, and D can be separated by Borel sets for each n
then UC" and D can be separated by Borel sets. Claim 2: if C, and D,,

can be separated by Borel sets for each n and m then UC" and UDm can

be separated by Borel sets. Proofs of these two claims alrrle elementa?y and we
omit the details. Now let A; and Asbe disjoint analytic sets in a Polish space
X. There exist continuous maps f,g : N¥ — X such that f(NV) = A; and
g(NN) = A,. Suppose, if possible, we cannot separate A; and A, by Borel
sets. Let Enyny..ny = {{m1,ma,..} € NY :m; =n,; for 1 <i < k}. Note
that Uf(En) = f(NN) = A; and Ug(En) = g(NY) = A,. Hence there exist

ny and my such that f(E,,) and g(E,,,) cannot be separated by Borel sets.
Since f(En,) = Uf(Em,m) and g(En,) = Ug(Eml,mz) we can find ny and
ng

mo
mg such that f(E,, n,) and g(Em, m,) cannot be separated by Borel sets. By
induction we can generate sequences {n,na, ...} and {my, ms, ...} such that for
any k f(En, n,,..n.) and g(Em, m,,....m,) cannot be separated by Borel sets.
If f({n1,n2,...}) # g({m1,ma,...}) then these two points can be separated by
disjoint open sets which implies that f({n1,na,...,ny}) and g({my, ma, ..., mn})
can be separated by disjoint open sets for N sufficiently large. [ If U is open and
contains f({ni,nz,...}) then the neighbourhood f~1(U) of {ni, ns, ...} contains
all points {n},n},...} with n}, =n;,1 < ¢ < N provided N is sufficiently large.
Similar result holds for a neighbourhood of {my,mas,...}]. We have proved that
f({n1,ng,...}) = g({m1,ma,...}) contradicting the fact that the left side belongs
to Ay, the right side to Ay [and A; and A, are disjoint].

Corollary
If Ay, As, ..., A, are disjoint analytic sets in a Polish space we can find disjoint
Borel sets By, Bs, ..., B,, such that A; C B; for each 1.

Proof: this is elementary.

Theorem
If A and A€ are both analytic then A is a Borel set.

Proof: there exist disjoint Borel sets By, By such that A C B; and A° C Bs.
But then A¢ C By C B and so B; C A forcing A to be equal to the Borel set
B;.

Theorem
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Let X and Y be Polish spaces and f: X — Y. Then f is Borel measurable
if and if only if its graph is a Borel set in X x Y.

Proof: Gy = g7'(A) where g: AxY — Y x Y is defined by g(a,y) =
(f(a),y) and A ={(y,y) : y € Y}. Thus Gy is Borel if f is Borel measurable.
Suppose Gy is Borel and B is any Borel set in Y. The disjoint analytic sets
Gy N (X x B) and Gy N (X x B°), when projected on the first coordinate, yield
disjoint analytic sets and so we can find disjoint Borel sets E7, F> containing
these projections. However these two projections are nothing but f~!(B) and
f71(B°). Thus f~Y(B) C E; and f~!(B¢) C E;. From the disjointness of E;
and Es it follows easily that f~!(B) = E; N A. Hence f is Borel measurable.

Theorem

Let X and Y be Polish, A C X Borel and f : A — Y be Borel measur-
able. Suppose f is injective and B = f(A) is a Borel set. Then f~! is Borel
measurable.

Proof: think of f~! as a map from Y into X. G;-1 = 0(Gy) where §(z,y) =
0(y,z). Since G is Borel and § = 0~" is Borel measurable it follows that Gy
is a Borel set and hence f~! is Borel measurable.

Theorem
Let A and B be Borel sets in Polish spaces. Then A and B are Borel
isomorphic if and only if they have the same cardinality.

Proof: suppose A and B are Borel sets in Polish spaces X and Y with the
same cardinality. If these sets are countable they are clearly Borel isomorphic,
so we assume that they are uncountable. There exist continuous injective maps
f:NY — A g:NY — B such that A\ f(NY) and B\g(NY) are at most count-
able. It is clear that these two countable sets are Borel sets (and so are their
complements) and f : NV — f(NY) f: N¥ — #(NN) are Borel isomorphisms
by previous theorem. Thus go f~!: f(NV) — g(NY) is a Borel isomorphism.
We can extend this to a Borel isomorphism of A onto B using an arbitrary
bijection on their complements provided A\ f(NV) and B\g(NY) are infinite. If
they are finite we can remove countable infinite sets from the ranges of f and
g and combine them with A\ f(NV) and B\g(NY). We leave it to the reader to
fill in the details of this argument.

Theorem
Let X and Y be Polish. Let A C X be Borel and f : A — Y be Borel
measurable and injective. Then f(A) is a Borel set.

Proof: we claim that there is a Borel measurable function g : ¥ — X
such that g(Y) C A and g o f is the identity on A. Once this claim is proved
we can conclude that f(A) = {y € Y : f(g(y)) = y} is a Borel set since
the identity map of Y and the map f o g are Borel measurable on Y. We
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now prove the claim. Let d be a complete metric for X and zp € A. We
define a sequence {g,} of functions from ¥ to X as follows: for each n let
{An,1,A,2,...} be a partition of A into non-empty Borel sets of diameter at
most % Let z, 1 € Apg. Since {f(A, k) @ k = 1,2,...} are disjoint analytic
sets we can separate them by disjoint Borel sets {Bnr : k = 1,2,...}. Let
L (y) = welp  + xol . Each g, is a Borel ble functi

In(y) Zk:x k1B, . + To Y\UBn,k ach g, is a Borel measurable function

k

from Y into A. If x € A then d(x, g,(f(x))) < 1/n. In fact € A,, ;, for some k
and f(z) € f(Ank) C Bnk 80 gn(f (%)) = nk; thus d(z, g, (f(x))) < diameter
of A, <1/n. Thus limg, (y) exists if y € f(A). Define g(y) to be this limit if

it exists and x¢ if it doesn’t. Then d(z, g(f(z))) = 0 for all € A. This proves
the claim.

Our next aim is to show that analytic sets in Polish spaces are universally
measurable,i.e. they belong to the completion of the Borel sigma field w.r.t. any
finite measure .

Let A be an analytic subset of a Polish space X. Let p be a finite pos-
itive Borel measure on X. Let pu*(A4) = inf{u(B) : A C B, B Borel}. We
claim that for any € > 0 we can find a compact set K such that K C A and
p(K) > p*(A) — e. Suppose the claim is proved. We can find B Borel such
that A C B and p*(A) + € > p(B). Thus, taking e = 1/n we get compact sets
K,, and Borel sets B, with K,, C A C B, and u(B,\K,) = u(B,) — u(K,) <

w(A) + 1/n — {p*(A) — 1/n} = 2/n. Now A = {{ JK,} U{A\| JK,.} and

{A\JKn} € ({Bu\Kn}. Since p(([{Bn\Kn}) = 0 it follows that A is u—
measurable. Thus it remains only to prove the claim. There is a continuous map
f : NN — A which is surjective. Let Iy ng,om = {{ma1,me, ..} € NN m, <ny;
for 1 < i < k}. We now show that there exist positive integers ny,na, ... with
W (Inyng,ne)) > 1*(A) — e for all k. [ It is not obvious that this proves
our claim!]. Since p*(f(I,)) T p*(A) we can find n; such that p*(f(l,,)) >
p*(A) —e. Since I, = UI"1JL2 we can find ny such that p*(f(In, n,)) >
p*(A) — e. Induction produces ni,no, ... with p*(f(Iny ne,...,n)) > #*(A) — €
for all k. Let K = f(I) where I = ﬂInl,nz _____ ne- K is compact because [
k
is compact in NY. Tt remains to show that p*(K) > p*(A) —e. We claim
that K = ﬂ[f([nl,n%,_,nk)]_. Let d be a complete separable metric for X.

. such

k
Let z € ﬂ[f([mmnk)]’ For each k there exists m®*) ¢ Intns,m
k

that d(z, f(m®)) < 1/k. By a diagonal procedure we can extract a subse-
quence {m(%)} of {mF} which converges to some m € NV, Clearly m € I and
f(m*)) — f(m) so d(x, f(m)) = 0. Thus z = f(m) € K. Thus K contains

ﬂ[f(]nlyni,,wnk)]*. Obviously K C n[f(]nln?nk)]* and we have proved
k k
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that K = m[f([nlnznk)]’ Now [f(In, ns,...mp)]” is closed and contains
k

f(Im,nz,---,nk)' Hence N([f(lm,nz,..»,nk)]i) > .U*(f(Im,nz,-..,nk)) > pr(A) — e
Since [f(Iny ns,...ni )]~ is decreasing we have p(K) = lm u[f(Iny ne....nn)]” =
p*(A) — e which proves our claim.

We have proved the following:

Theorem
Any analytic subset of a Polish space is universally measurable.

Remark: if A is a Borel set in R? then the projection of A on the first (or
second) coordinate is analytic, hence universally measurable, but it need not be
a Borel set. To see that the projection need not be Borel we prove the following:

Theorem
If X is a Polish space and A C X then the following are equivalent:

a) there is a Borel set in X x X whose (first) projection is A

b) there is a Polish space Y and a Borel set in X x Y whose (first) projection
is A

c) there is a continuous map from NV into X with range A

d) there is a closed set in X x NN whose projection is A

e) for any uncountable Polish space Y there exists a G5 set in X x Y whose
projection is A

f) A is analytic

Note that if A is an analytic set in R which is not Borel then A is the
projection of a Borel set in R x R by f) implies a); hence there is a Borel set
in R? whose projection on R is not Borel. In fact there is a Closed set in R?
whose projection on R is not Borel. A proof is given below.

Proof: any analytic set is a continuous image of a Polish space and any
Polish space is a continuous image of NY. Hence f) implies c). Since NV is a
Polish space ¢) implies f). a) implies b) is obvious. Let b) hold, say A = p(B),
B Borel in X x Y, p being the projection map of X x Y onto X. Since B is
analytic it is a continuous image of a Polish space and any Polish space is a
continuous image of N (by an earlier theorem). Hence there is a continuous
map ¢ : N¥ — X x Y with range B. Now A = p(¢(NY)) and this proves c)
since p o ¢ is continuous. c) implies d): let f : N¥ — X be continuous with
range A. Then Gy is closed in NN x X. Its projection on X is A. Applying
the homeomorphism (a,z) — (z,a) to Gy and then projecting it will give us a
closed set in X x NN whose projection is A. d) implies e): let ¢ : NY¥ — Y be
a homeomorphism into Y. [This follows from a theorem of Mazurkiewicz which
is proved below. ]. The range F of ¢ is a G5 in Y because it is Polish. Let C
be a closed set in X x N whose projection is A. {(z,¢(a)) : (z,a) € C} is a
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Gs set in X X Y whose projection is A. [If C = ﬂ W, and F = ﬂ V,, with
n=1 n=1

W,, and V,, for each n then {(z,¢(a)) : (z,a) € C} is the intersection of the sets

{(z,d(a)) : (z,a) € W,,¢(a) € V,,} which is open in E. Since F is itself a G5 in

Y it follows that {(z, ¢#(a)) : (z,a) € C'} is a Gs set in X x Y ].Since e) implies

a) is obvious the proof is complete.

Theorem [ Mazurkiewicz]
N is homeomorphic to any G5 subset S of a zero dimensional (z.d.) Polish
space X such that S and X\S are both dense in X.

Corollary

NN is homeomorphic to a subset of R. In fact every uncountable Polish space
contains a homeomorphic copy of NV,

Proof of the corollary: let X be the set of all irrational numbers. Since X is
a G5 in R is it Ploish. It is z.d. because {(o, ) N X :a < B, € Q,8 € Q} is
a clopen basis for X. Let S = X\C where C is a countable dense subset of X.
Then S and X\S are dense in X and S is a Gs. The theorem implies that N
is homeomorphic to S.

For the second part note that every uncountable Polish space contains a
homeomorphic copy of {0, 1}.

The set S is homeomorphic to a subset of {0, 1} via dyadic expansion.

Proof of the theorem: we can write S as G1 N G N ... where each G, is
open and Gny1 € G, Vn. Since S is not closed there exists j; such that G,
is not closed. Since Gj, is open we can write it as A; U As... where each Ay
is a non-empty clopen set, the diameter of each Ay does not exceed 1 and Aj s
are disjoint. [ The fact that there are infinitely many non-empty Aj.s follows
from the fact that their union G, is not closed]. Now fix k and consider the
clopen set A;. We claim that A, N G; is not closed for some j > 2. Suppose
this is false. Then SN A = Az NG2NG3N... s closed. If © € A;\S then there
exists a sequence in S N Ay converging to x. [ This follows from the hypothesis
since Ay is a non-empty open set]. This is a contradiction. Hence Ay NG, is
not closed for some j = jo > 2. We can write Ay N G, as a disjoint union
of sets A1, Ags, ... each of which is clopen and non-empty with diameter not
exceeding % Now for each Ay; there exists jo > 3 such that Ax; N G, is not
closed. We get a collection {Ag;;} of non-empty clopen sets with diamter of
Apji not exceeding % whose union is Ag; N Gj,. By induction we construct
copen sets Ak k,. .k, Let € S. Then z € G, for each n. Hence there exist

ki, ko, ... such that = € nAkle...kn- This intersection is a singleton set. The
n

map ¢ : x — {ki, ko, ...} is a bijective map from S into NN. [If x € ﬂAklk?”k

n

n
then « € G, for each r, hence x € S|. Suppose x; — . Let k; be such that
x € Ag,. Since Ay, is open x; € Ay, for j sufficiently large. Hence the first
coordite of ¢(x;) converfges to the first coordinate of ¢(z). Clearly the same is
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true of all coordinates which proves continuity of ¢. Continuity of ¢~* follows
easily from the fact that diameter of A, r,. .k, tends to 0 as n — oco.

Corollary
There exists a closed set C' in R? whose projection on the first coordinate is
not Borel.

Proof: there exists an analytic set A in R which is not Borel. A is the image
of NN under a continuous real . valued map f . Thje graph G of f is a closed
set in N¥ x R. Regarding NV as a subset of R (possible by previous corollary)
we get a closed set C' in R? whose projection on the first coordinate is A which
is not Borel).

An isomorphism theorem for measure algebras

Theorem
Any separable non-atomic measure algebra is isomorphic to the measure
algebra of Lebesgue measure on (0, 1).

Here are the definitions of the terms used in this theorem: let (9, F, P)
be a probability space and Z the metric space of equivalence classes of sets
in F under the equivalence relation A”B if P(AAB) = 0 with the metric

d(A,B) = P(AAB)(= /|IA — Ig|dP. We define set theoretic operations of

unions, intersections and complements in Z in the obvious way. (e.g. [A]¢ = [A9]
where [A] stands for the equivalence class of A). This space is the measure al-
gebra associated with the probability space (Q,F,P). We note that if F is
countable generated then the metric space Z is separable: if Ay, Ao, ... generate
F then the field generated by these sets is countable and dense. Conversely if
there is a countable dense set {[A,]} in Z then, given A € F there exist integers

n1 < ng < ... such that / ‘IA — IAnk dP < 1/k. Thus IA”k — T4 in L' and we

also have a.e. convergence along a subsequence. It follows that I4 = I a.e. for
some B belonging to the sigma field generated by A, As,.... We call the mea-
sure algebra separable when this last condition holds. Non-atomic means that
P(A) > 0 implies 0 < P(B) < P(A) for some measurable set B contained in
A. In this case 0 < a < u(A) implies p(B) = a for some measurable set B con-
tained in A. An isomorphism of measure algebras is a bijection that preserves
complements and countable unions as well as measures.

Lemma 1

Let {An1, An2s oy An i, },m = 1,2, ... be a decreasing sequence of partitions
of © by measurable sets and suppose this sequence is dense in the sense A
measurable and € > 0 imply there exists a positive integer N and a set B which
is a union of some of the sets Ay 1, An2, ..., An gy such that P(AAB) < e. If

P is non-atomic then max P(4, ;) — 0.
1<j<kn ’
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[ The partitions {A, 1, An2, ..., Ank, }.n=1,2,... are said to be decreasing
if each A,, ; is a union of some of the sets {A,4+1,1, Ant1,25 s Ang1,k,4, - Note
that {1211232 P(A, ;)} is decreasing in this case].

<j<kn

Proof: suppose, if possible, ingx P(A, ;) | 6 > 0. There exists j1 < k;
<<

such that gjléx P(A,; NA; ;) > 0. [If this is false then for 1 < j < k,, we
can choose k such that A, ; C Ay, j; and hence P(4,, ;) = P(A,;NA1 ;) <.
This contradicts the fact that | Dnax P( j) = 6]. Now, if n > 2 there exists
ja < kg such that gjlix P(Anj ﬂAl j1NAj,)>0. [Thesets A, ;NA;;,1 <
J < ky form a partition of A; ;, and . P(A, ;N Ay ) > 6. The partition

1<j<k
AnjNAL;,1 < j < kyis finer than Ap jNA; 5,1 < j < ke and hence the first

step can be applied to the space A, ; with the restriction of P to this set to

conclude that there exists jo < ko with in:zx P(A, ;jNA;j,NAy ;) > 6. (The
<<

fact that P(2) = 1 we not used in the first step)] Repeating this we get integers
Ji < k;yi = 1,2,... such that for any positive integer p éni)]i P(A,;NA; N
<5<

Ay j,..NAy ;) > dif n > p. In particular P(Ay j, N Ay j,...N Ay ,) > 6 forall p
and so f:)(AlJ1 ﬂAl,jz ) >9. Let F = Al,h ﬁALh . so that P(E) > 0. By
hypothesis there exists a measurable set F' C E such that 0 < P(F) < P(E).
Let 0 < € < min{P(F), P(E) — P(F)}. By hypothesis there exists a positive
integer N and a set B which is a union of some of the sets Ax 1, An2, ..., AN kn
such that P(FAB) < e. However E C Bor ENB =(. [ E C Ay j, so for each
J < kn either E C Ay or ENAp,; = 0. Since B is a union of some of the sets
AN, AN 2y s ANy Weget E C Bor ENB = (). If E C B we get (F C B) and
P(B\F)<eand P(E) < P(B)<e+ P(F)<{P(E)—-P(F)}+P(F)=P(FE)
a contradiction. If ENB = then FNB = () and we get P(F) + P(B) =
P(FAB) < e < P(F) a contradiction again. This completes the proof.

Lemma 2
Let X = [0,1], B the Borel sigma field and m the Lebesgue measure. If
{0,201, Tn,2, -y Tk, } 18 & sequence of partitions of [0,1] each finer than the

previous one Wlth in%(c {.’Enj mnﬁj,l} — 0 as n — oo then the sequence of
<j<kn
partitions {{[@n j—1,2n;) 1 <j<k,}:n=1,2,..}is dense.

[ In order that we really have partitions of X we have to modify the interval
[T j—1,Znj) tO [T j—1,%n ;] When j = k,. We shall ignore this (insignificant)
point].

Proof: let € > 0 and choose N such that pJax {zn; — N1} < €/2.
<<

Let (a,b) be any open interval contained in X. Let j; be such that a €
[N ji—1,2N,j,). Call [znj,—1,2N,;,) as Er. If b ¢ Ey consider the intervals
(TN TN ji+1)s BN G415 TN Git2)s o[B8y +i-1, T jy+1) where | s such that
be[xnNji+i-1, TN, j1+1)\ TN j1+1, TN, j,+i+1). Let B be the union of the intervals
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[TNj1s TN G14+1)s [N G141 TN 1 42)s o0 [TN i 411, TN Gy +1)s1ec B = [Ty, TN ji41)-
Clearly m((a,b)AB) < 2221(1%)15 {zn,; — 2N j-1} < e It follows from this that
<j<kn

the conclusion holds if (a,b) is replaced by a finite disjoint union of half-closed
intervals or, more generally, by a Borel set.

We are now ready to prove the isomorphism theorem. Let {E,} be dense
in the measure algebra of a non-atomic separable probability space (2, F, P).
For fixed N the sets {41 N A2 N...N Ay : A; = E; or A; = E? for each i} is
partition of €2 and these partitions become finer and finer as N increases. Also,
this sequence is dense. [The sigma algebras generated by these partitions are
increasing, their union is an algebra and this algebra generates F]. By Lemmal
we conclude that  fnax P(A, ;) — 0 where the N — th partition has been

denoted by {An1,AN2, ..., AN iy} We begin by partitioning [0,1] by points
0< T11 < 1,2 < ooy T1ky with T1,5 — X1,j-1 = P(AL]') for each j. We then
form a finer partition whose subintervals have lengths P(As;),1 < j < ko
and so on. Lemma 2 can be applied to these partitions of [0,1]. We get an
isometry between the measure algebras of (2, F, P) and ([0, 1], B, m) by mapping
partition elements as well as their unions to corresponding partition elements
and their unions. Since these union form dense subsets of the appropriate spaces
it is clear that the map extends to an isometry of the measure algebras which
preserves complements and countable unions. It also preserves measures and
the proof is complete.

An isomorphism theorem for measure spaces

Let p be a Borel probability measure on [0, 1] such that y{z} = 0 V. Then
([0, 1], B, p) is isomorphic to ([0, 1], B,m) where m is the Lebesgue measure.

Proof: let F(z) = p(—o0,2]),G(z) = inf{t € R: F(¢t) > 2} and H(z) =
sup{t € R : F(¢t) = z}. Then G is measurable and m{z : G(z) < t} = F(t)
Vt. [ This is standard; just verify that G(z) < t iff F(t) > z]. We claim that
G becomes a Borel isomorphism if we remove suitable null sets from [0, 1] and
R. First observe that H(z) < G(y) if 0 < z < y < 1. Indeed, F is continuous
by hypothesis and the supremum and the infimum if the definitions of G and
H are attained. If G(y) = @ and H(z) = 8 then F(«a) =y (why?) and F(8) =
x < y = F(«) which implies § < « as stated. Claim: J = {z: G(z) < H(x)} is
at most countable. Note that G < H (because G(x) = inf{t € R: F(t) = x})
and if z < y then the intervals (G(z), H(z)) and (G(y), H(y)) are disjoint
because H(x) < G(y). Since there can only be a countable number of disjoint
open intervals in R the claim follows. Let E = U (G(z), H(x)]. Note that

zeJ
w((G(x),H(z)]) = F(H(z)) — F(G(z)) =« —x = 0. It follows that u(E) = 0.
Consider the map G from [0, 1]\{0,1} to R\E. We claim that this is a Borel
isomorphism from ([0,1],B8,m) to (R,B,p). If z < y then G(z) < H(z) <
G(y) so G is strictly increasing, hence one-to-one. If G(a) € (G(z), H(z)] then
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G(z) < G(a), hence = < a. But then H(z) < G(a) a contradiction. Hence G
maps [0,1]\{0,1} into R\E. Let y € R\E. We shall show that G(F(y)) = y
proving that G is onto. G(F(y)) < y by definition of G. Suppose G(F(y)) < y.
Then y € (G(x), H(x)] where © = F(y). [ because H(F(y)) = sup{t : F(t) =
F(y)} > y]. But then y € E, a contradiction. We have proved that G is a
measurable bijection from [0,1]\{0,1} onto R\E. Measurability of its inverse
follows from monotonicity. All that remains is to show that mo G=! = p. It
suffices to note that F(z) = m{t: G(t) < z}.

Corollary
If X is an uncountable Polish space and p is a Borel probability measure on
it such that p{z} = 0 Vz then (X, B(X), 1) is isomorphic to ([0, 1], B, m).

Proof: (X,B(X)) is Borel isomorphic to ([0, 1], 8) and hence (X, B(X), i)
is isomorphic as a measure space to ([0, 1], B,v) for some measure v. Further
v{z} = 0 Va and hence ([0, 1], B, v) is isomorphic to ([0, 1], B, m).

END OF APPENDIX

APPENDIX ON CHARACTER THEORY

FOURIER ANALYSIS ON GROUPS

Throughout G denotes a locally compact abelian (LCA) group and m de-
notes a Haar measure on GG which is assumed to be a probability measure when
G is compact.

C.(G) stands for the space of continuous complex valued functions on G
with compact support and Cy(G) stands for the space of continuous complex
valued functions on G which vanish at co. f € C(G) vanishes at oo for every
€ > 0 there is a compact set K in G such that |f(z)| < € if x ¢ K. Equivalently
f can be extended to the one-point compactification of G by defining it to be 0
at the "point at infinity".

We recall that C.(G) is dense in LP(= LP(m)) for 1 < p < oc.

Theorem

If 1 <p<ooand f.(y) = f(yx~!) then 2 — f, is a uniformly continuous
map from G into LP.

[ For the definition of uniform continuity refer to the proof of the lemma
below].
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Proof: this follows by a standard argument using the following:

Lemma
Every function in Cy(G) is unformly continuous.

Proof: let f € Cy(G). We have to show that given € > 0 there is a neighbour-
hood U of e in G such that |f(z) — f(y)| < € whenever z,y € G and zy~* € U.
Let K be a compact set such that |f(z)| < e if z ¢ K. For each € K there
is a neighbourhood U, of e such that |f(z) — f(y)| < € whenever y € 2U,. Let
V. be a symmetric neighbourhood of e such that V,V, C U,. There is a finite
set {z1,x9,...,xn} of K such that K C 21V, UxV,, U..UayV,,. Let V
be the intersection of V,, Va,, ..., Vz,. Then V is a symmetric neighbourhood
of e. Let xy~! € V. Suppose x € K. Then z € x;V,, for some i. Hence
y € Vo C Va,;,V,, C x;Vy, Ve, C x;Uy, and hence |f(x;) — f(y)| < e. Since
x € x;Vy, C z;Uy, we also have |f(z;) — f(z)| < e. Thus |f(z) — f(y)] < 2e.
Since V is symmetric we get the same conlcusion if y € K. Now suppose z ¢ K
and y ¢ K. Then |f(z) — f(y)| <e+e.

Definition: if f and g are measurable and / ‘ fley=Yg ’dy < oo (where
dyis an abbreviation for dm(y)) we define ( / flxy=Y)g(y)dy. Thus
(f*g)( / fy(@)g(y)dy. f =g is called the convolution of f and g.
Theorem

|f(zy™")g(y)| dy < oo then (f * g)(x) = (g% f)(x)

I f,g € L' then f+g € L' too and [If gll, < [I£], lgll;

If f,g,h € L* then (fxg)*h= f*(g*h)

If pg € (1,00),%+% =1,f € LP and g € L? then f x g is defined at every
point, it is continuous and vanishes at co.

For f,g € C.(G) we have fx g € C.(G) and Sy.g C SySy where Sf.Sg, Sfig
are the supports of f,g and f * g respectively.

If f € L' then Ty : L? — L? defined by T¢(g) = f * g is well-defined and
WENAE

Proof: the proof is standard. We just mention that continuity of f * g uses
previous theorem.

Remark: L' is a Banach algebra with convolution as multiplication. In gen-
eral it does not have a multiplicative unit. Also there is no involution operation
* such that ||f*|| = ||f| and ||f*f]] = ||f]|>. Hence Gelfand -Naimark Theorem
cannot be applied directly to this algebra. The map f — T defined above can
be used to get a Banch algebra with involution by taking the closure in operator
norm of {Ty: f € L'}.
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Note that if G is discrete ( i.e. the toplogy of G is the discrete topology)
then ml{e} is a multiplicative unit. (Since m({z}) is independent of z this

number cannot be 0). It can be shown that if L' has a unit then G is necessarily
discrete.

Definition: if f € L' and v € G (i.e. v: G — St is a continuous homomor—

phism) then the Fourier transform of f at ~ is the number f / flz

Theorem [ Characterization of algebra homomorphisms of L]

A function ¢ : L' — C is a non-zero algebra homomorphism ( i.e. it is linear

and ¢(f * g) = ¢(f)(g) for all f,g € L)
if and only if there exists v € G such that o(f) = f(’y) for all f € L.

Proof: if ¢ has this form it is obviously linear and the fact that ¢(f * g) =
&(f)(g) for all f,g € L' is proved easily using Fubini’s Theorem. Note that if

é(f) =0 for all f € L' then /f(x)’y(m)dx =0 for all f,g € L' which implies

~(z) = 0 a.e. However y(x) # 0 for any . Thus ¢ is non-zero. Conversely let ¢
be any non-zero algebra homomorphism of L!. We claim that the linear map ¢
is bounded on L!. For homomorphisms on a Banach algebra with unit this is a
standard argument (ref. Rudin’s Functional Analysis). For the general case we
can adjoin a unit to L' and ¢ becomes the restriction to L' of a homomorphism
on the new Banach algebra. The conclusion is ||¢|| < 1. There exists, therefore, a

function v in L such that ¢(f) = /f'y for all f € L*. The equation ¢(f*g) =

) gives //f 2y~ YHgly)dyy(x //f )v(y)dydz or all

f,g € L'. This implies /f(a:y By (z)dz / x)y(x)y(y)dz a.e. for all

f € L'. In particular /fy(x) (x)dx = (/ (z)vy(x)dx)y(y) for some z. The
fact that y — f, is continuous (and ||¢| < 1 so |y(z)| < 1 a.e.) shows 7 is
continuous on G. Now /f(z)'y(zy)dz:/f(a?y_l)'y(:zc)dx:/f(x)'y(m)’y(y)dm

for all f € L' which implies (by Fubini’s Theorem) that v(zy) = v(2)v(y) a.e.

on G x G. By continuity of v this implies y(zy) = v(2)v(y) for all z,y € G.

Hence v(e) = 0 or 1. If y(e) = 0 then v (and hence ¢) is zero contradicting
1

the hypothesis. Hence y(e) = 1 and y(z~1) = - Since [v(z)] <1 we get

|y(x)| = 1 for all z. Finally we note that v, = v has similar properties and
o(f) = f(p) for all f.

On G we consider the topology of uniform convergence on compact sets. A
base for this topology consists of sets of the type {7y : y(K) C U} where K is
compact in G and U is open in C.
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Theorem
The topology defined above is the smallest one that makes the functions
v — f(v) (f varying over L') continuous.

Proof: if a net {7,;} converges to 4 uniformly on compact sets then f(7,) —
) whenver £ € (@) becawse |F) = Fo0| < [ 15 i) ()] s
and |;(z) —y(x)| — 0 uniformly on the support of f. If f € L! is arbitrary
and € > 0 there exists g € C.(G) such that / |f —g] < e Now ‘f(*yz) —f(y)| <

F) = 8| + 180~ 501+ [50) — F)| < €+ 13(3) — ()| + ¢ and

1§(7;) — §(7)] — 0. We have proved that v — f(v) continuous for all f € L'.

Let 7 be the smallest one that makes the functions v — f(v) (f varying

over L) continuous. We have to show that {y : v(K) C U} € 7 for any

compact set K in G and any open set U in C. Let v, € {y : v(K) C

U}. We claim that (y,2) — ~(z) is continuous on (G,7) x G: fix f € L

and let v, € G,z0 € G and € > 0. There exists a neighbourhood U of

zo and a T-neighbourhood V' of ~, such that | f, — fzll; < € for z € U

and |(foo) (7) = (fay) (70)] < € for v € V. Now |(fo) () = (fa,) (v0)| <

(o) () = (fao) (D[F](fao) (1) = (fzo) (V)| < MIfe = fao liH|(fz0) (0) = (fao) (v0)| <

2 for x € U and v € V. Now recall that (f,) (7) = y(z)f(y). Hence

(@) f(7) = 70(20)f(70)
f(70) = 1 and then shrink V so that ‘f(v) - f('yo)‘ < € for v € V. Then

< 2 if x € U and v € V. Choose f such that

; ]wx)f(v) — ol@0)f ()

() — olz0)]| < \wx)m) @)
2e < 3e. This proves the claim.

< |fo - 1]+

If + € K then v4(x) € U and hence there exists a neighbourhood W, of
x and a T7—neighbourhood V, of v, such that v(y) € U whenever v € V,, and
y € W,. Let K C Wy, UWy, U.. UW,,. Let V = V,, N Vs, N...0Vy,. Then
Vc{y:v(K)cCU}. [ye€V,z e K imply there exists ¢ such that z € W, ;
since v € V,, we have v(x) € U]. We have proved that {7 :v(K) C U} is open
in 7. The proof is now complete.

Theorem . .
For each f € L! the function f € Co(G). A= {f: f € L'} is dense in
Co(G") ( for the sup norm). g € A and z € G implies v — g(y)y(x) is in A

and v — g(yy,) isin A. If f € L' and v € G~ then (f *~)(x) = y(z)f(7).
Proof: the fact that f € Co(G) is proved using Banach algebra theory. [ In

my notes on GelfandN.tex the following fact is proved: let A be the set of all non-
zero complex homomorphisms on L' with the topology from (L')*, i.e. ¢, — ¢
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iff ¢,(f) — ¢(f) for all f € L'. Then for each f € L' the map ¢ € A — ¢(f)
belongs to Cp(A). This is proved by identifying (via Banach Alaoglu Theorem)
the set A U {0} with the weak*-topology as the one-point compactification of
A and noting that ¢ — ¢(f) is continuous on A U {0}. Define ¢ : A — @
by f(£(6)) = &(f). € is a bijection. Also ¢ is continuous when G is given
the topology of uniform convergence on compact sets and A is given the weak*
topology: if 6,(f) — (/) for all f € L and 6(f) = £(1), 6,(f) = F(7,) then
v, — v uniformly on compact sets. This follows from the previous theorem. If
f € L' and € > 0 there exists a compact set K in A such that |¢(f)| < e if

¢ ¢ K. Theset C' = £(K) is compact in G and v ¢ C implies ‘f(’y)‘ =|o(f)] <e

where ¢ is such that £(¢) = v (so that f(7) = f(£(¢)) = &(f)). We have proved
that the Fourier transform of any L' function vanishes at co]. To show that

A is dense we note that A is a sub-algebra of Cy(G). If v; # 745 then there
exists f € L' such that f(v;) # f(72). Alsoif f € L' and g(x) = f(z~!) then

30) = [ £ n@idsl = [ frty ™ = [ St = 7o)
It now follows by Stone—Weierstrasis Theorem that A is dense on Cy(G). Next
fv(z) = F(=)f] € A. Also f(vy1) = [f(71)] - It remains to show that

(f %7)(@) = 7(2)f(7). The left side is / ey (y)dy = / Fe)y(z1a)dz =
/ F@ (@) dz
- / F)()dzy(z) = v(@) F ().

Theorem

G is an LCA group ( under pointwise multiplication) and sets of the type
{v:|]1 —7(z)| < ¢ for all x € K} where K is a compact subset of G and § > 0
form a neighbourhood base at 1.

Proof: only thing that requires a proof is local compactness. Let U be a
neighborhood of e whose closure is compact. Consider V = {y: |1 —~(z)| < ¢
for all = € l}} We prove that this neighbourhood of 1 is relatively compact.

Lemma

Let € > 0. There exists a positive integer N such that ¢ € S! and ¢,c?, ..,c
have real parts strictly positive imply |c — 1| < e.

N

Suppose this is false for some ¢ > 0. Then there exists a sequence {c,} in
St such that c,,c2,..,c? have real parts strictly positive but |c, — 1| > e. If
c is a limit point of this sequence then Reck > 0 for every positive integer k
and |c— 1] > e. If ¢ is not a root of unity then {c,c?,...} is dense in S and
hence Rec® — Re(—1) = —1 for some k; T co which is a contradiction. Hence
there is a least N > 2 such that ¢ = 1. The numbers ¢, ¢?, ..., ¢V are distinct
and they are all NV — th roots of 1. Hence every N — th root of 1 has positive
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C. .. i N//2 . .
real part. This is a contradiction because Ree?™ "~ < 0 if N is even and Re

22 0§ N s odd. [ Note that m# — /N € (n/2,7)].

Back to the proof of the theorem: we assume that § is so small that ¢ €
St le—=1] < § = Rec > 0. Let € > 0 and choose a positive integer N as in
the lemma. Let W be a neighbourhood of e such that WY c U. If y € V
and z,y € W then 27,97 € U for 1 < j < N. Hence |1—’yj(x)| < ¢ and
|1 —~(y)| < 6 for 1 < j < N. This implies |1 — y(z)| < € and |1 —(y)| < €
so |y(x) —y(y)| < 2¢. Let {y,} beanetinV. f D={ceC:|c—1] < 4§}

then V' C DY so by Tychonoff’s Theorem there is a subnet {vi,} converging

pointwise (say to ¢) on U.

Claim: {v;,} converges uniformly on any compact set K in G. If this is false
we may suppose (by going to a subnet) "yij (xj) — d)(:rj)‘ > 6e > 0 for some
net {z;} in K and some € > 0. Let W be as above for this e. By going to
7, () = 7, ()] < 26
for j > some jo ( because xm;l € W). Observe that since |y(z) — v(y)| < 2¢
whenever 2y~! € W and v € V it follows that |¢(x) — é(y)| < 2¢ whenever
zy~t € W. Hence |¢(z;) — ¢(x)| < 2€ for j > some j;. Now "yij (x;) — gb(mj)’ <

a further subnet we may suppose z; — z (say). Now

7, () = 73, (@) + i, () = 6(@)| + 6(w5) = 6(@)] < 5¢ for j > some js con-

tradicting the fact that ‘%J_ (xj) — (b(a:j)’ > 6e. We have proved that every net

in V' has a subnet thatg converges uniformly on compact sets. [ It may be noted
that ¢ is a continuous homorphism into S*, i.e. ¢ € GJ.

Theorem

In G sets of the form {z : |1 —y(z)| < 7 ¥y € C} where C is compact in G
and 7 > 0 are neighbourhoods of e. In G sets of the form {y : |1 —y(z)| < r
Vv € K} where K is compact in G and r > 0 form a neighbourhood base at e.

Proof: the second part is obvious. Let zg € V = {z : |1 —~v(x)] < r
Vv € C}. The map v — y(zo) is continuous on G and C is compact in G and
sosup{|1l — vy(zo)| : v € C} is attained. Hence sup{|1 — y(zo)| : v € C} < r. Let
0 <e<r—sup{|l —v(zo)| : v € C}. For each v, € C we have |1 — v, (zo)| < 7.
By the continuity of the map (z,7) — ~(z) on G x G established above we
see that there exists neighbourhoods V, W, = of ¢ and v, respectively such that
v e V,y e Wy, = |y(x)—(zo)| < e The neighbourhods W, ,v, € C
form an open cover of C. Hence there exists a finite set {7y, 74,...,7,} such
that C is covered by W, ,1 < i < k. Now v € C implies v € W,,, for some
i and hence |y(x) —v,;(zo)| < e. This gives |y(z) — 1] < e+ |1 —~,;(x0)] <
€+ sup{|l —y(xzo)| : vy € C} <r. Hence V C {z: |1 —v(z)| < r Vy € C} and
the proof is complete.

Theorem [Bochner]
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Let ¢ : G — C be continuous at e and positive definite. Then there exist

a positive regular Borel measure p on G such that o(x / v(x ) for all

G
r e .

Proof: standard arguments give the following: ¢(z 1) = ¢(x), |p(z)| < ¢(e)
and |¢(z) — o(y)|* < 26(e) Re[p(e) — ¢(zy~1)]. Thus ¢ is bounded, uniformly
continuous and ¢(e) > 0 (unless ¢ = 0 in which case we can take p = 0).
Without loss of generality we may suppose ¢(e) = 1. Let f € C.(G) and let K be
its support and € > 0. Then f(z)f(y)¢(zy~!) is uniformly continuous on K x K.
It is easy to see that there exists a partition {Aj, Ao, ..., Ax} of K such that

k

S Flefwy)o(es — oy m(Em(E;) differs fom [ [ 1) @)élay)dody
i,j=1
by at most €. It follows that the double integral here is non-negative for any

f € C.(@), hence for any f € L(G). Let Ty(f) = /f(;S (f € LY(GQ)). Recall

G
that for each f € L' the function f € Co(G) and A = {f : f € L'} is dense
in Cy(G). Define Sy : A — C by Su(f ) = Ty(f). We are going to show that
|To(f)| < ||f||oo which shows that f = ¢ implies Ty(f) = Ty(g). Thus S, is

well-defined. Also ‘S¢(f)‘ =[Tu(f)| <

f H so Sy extends to a bounded linear
o0

functional on Co(G) ( with the sup norm). Hence there exists a regular Borel

measure [, on G such that S¢ /f Ydu(y) for all f € L'. This means

/ Fy)duy / f¢ for all f € L'. Hence / / f(2)7(z)dzdp(y / fé and

since f € L' is arbitrary this gives /_(x)d (7) = ¢(z) almost everywhere.

Clearly both sides are continuous and hence the equality holds at every point z.

To complete the proof replace p by po7~ ! where 7 : G — @ is the map v — %

It remains to prove that |Ty(f)] < HfH for all f € L'. Define < f,g >'=

//f(x)g(y)qb(xy‘l)dxdy. It is easy to verify that < f,g >'= Ty(f *xg")

where g7 (z) = f_(zfl). Note that < f,g >’ is linear in f conjugate lin-
ear in ¢ and < f,f >'> 0. Cauchy - Schwartz inequality holds under these
conditions and so |< f,g >'| < V< f, f >7\/< g,9 >". Let U be an open set
such that e € U,U is compact and U™! = U. Let g = (1 ) Iy. We have <

P(xy~")dady = m(U//f Ho(zy™") — o(a) ydady +

/f(a;)¢ )da:. Hence |< f, f > —=T4(f)| < € if U is suitable chosen. Also

fag>_ U)
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< g,9 >'= m%w)//qﬁ(xy_l)dxdy =1+ m%((])//{qb(xy_l) — 1}dady so
vJu vJu

|< g,9 >" —1| < €if U is appropriately chosen. Applying |< f,g >'| < V< f, [ >'V/< g,9 >’
and letting € — 0 yields |Ty(f)| < V< [, F>" = \/Tp(f* f ). Now T} is a
bounded linear functional on L' corresponding to the element ¢ of L> and
16l < 1so I Tul <1. Hg=f*f,92=9%9g ,gns1 = gn * go(n > 2) then
LoD < Tolg) < VTolss) 1
<. < {T¢(gn)}1/2"71. Hence |T(f)?> < ||gnH}/2n_ . A simple exercise is
to show that (f * f ) = f = f . This shows that g, is simply the "2"~! -th
power" of g w.r.t. convolution operation. By the spectral radius formula we get
|T¢(f)|2 < p(g) where p(g) is the spectral radius of g. By Banach algebra theory

we have p(g) < ||f|| . [ We use two theorems from Rudin’s Functional Analysis:

let X = L'(G) x C with the multiplication operation (f,c)(g,d) = (fg + cg +
df,cd) and the norm ||(f,c)|| = ||f|l; + |¢|. Then X is a commutative Banach
algebra with unit (0,1). Fix f € L' and consider the element (f,0) of X. By

Theorem 10.13, page 235 of Rudin we have ||(f, 0)"||1/" — p((f,0)) (the spectral

radius of (f,0). This gives lim || f[|;/" = p(f,0). Now if ¢ € o((f,0))\{0} then,
by Theorem 11.5 page 265 of Rudin, there exists a complex homomorphism
® of X such that ¢ = ®((f,0)). Define ¢ : L' — C by ¢(g) = ®((g,0))
for any ¢ € L'. Then ¢ is a non-zero complex homomorphism on L' and
c = ®((f,0)) = ¢(f). But any non-zero complex homomorphism ¢ of L! is of
the type ¢(g) = g () for some v € G and, conversely, any v yields a complex
homomorphism of L. Hence, if o((f,0))\{0} is non-empty then p((f,0)) =
sup{|c| : ¢ € a((f,0)) < sup{|¢(f)| : ¢ is a complex homomorphism of L'} =

sup{|f (V)| : v € G} = HfHOO This inequality also holds if o((f,0))\{0} is
empty.]. Identifying elements § of Api(g) with the functions f — f(’y) with

7€ G we get p(f) = sup{|f(7)] : 7 € G} = || || .. Finally we get [To(f)]* <

191l and since ()" = [f]~ we get |Ty(f)I* < (1§l < )f eyl

’f zo It remains to show that u is a positive measure. We have 1 = ¢(e) =

[r@dnta) = (@) and Jul ©) = T, < 1. We can wite u(E) = [ fa

G E

with |f| = 1 ae. [|u]. We have 1 = u(G) = /fd|u| which implies 1 =
o

/Refd|u|. Hence 1 = /Refd|u| < /|f|d|m = |u/(G) = 1 which gives

€] G
Re f =1 a.e. and hence Im f =0 a.e.. Thus f =1 a.e. and p = |y

Theorem
The measure p in Bochner’s Theorem is unique.
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Proof: we claim that /'y(z)du(y) =0 for all z ( where p is a complex mea-
o

sure) implies = 0. If f € L! then /f )du(y //f x)dzdp(y // x)du(y

0 ( because 7(z) = v(z~1)). But {f feLt}is dense in Co(G) so p = 0.
Theorem [Fourier Inversion Theorem]

Let M = {f € C%: f(x) = /’y(a:)d,u(’y) Vx € G for some regular Borel
A G’\
measure p on G}. Then
D feLforall fe L'NM
2) if f € L' N M then we can write f(z) = / (z)d~ for all = provided
@

Haar measure on Gis suitably normalized.

Proof : for f € L*NM we write y ¢ for a measure which satisfies the equation

flx) = / (z)dps(y) Vo € G. Note that (g * f)(e) = /g(xfl)f(:z:)dx =

G”

/g -1 /7 @)dp s (y d;zc—// Yy (w)dedp g (y // (2)dzdpg ()

G~

/g )dps(y) Vg € L' and, changing g to g *x h (where h € L* N M)

Jha)dns () = () 1)(e) = ((gx Ph / F) )i (). From
o

this we conclude that h(y )dpy(y) = F(V)dpy(y). [{§: g € L'} is dense in Co(G)
as proved earlier]. This equation holds for all f,h € L' N M. Now let h € C.(G)
and K be its support For each v € K there exists f € C, (G) with f(v) # 0.

Now (f * f) ‘f ‘ > 0. Also (f*f) (v ’f'yl‘ > 0 for all ;.

Since v, — f (’yl) is continuous ( because convergence in G implies uniform

convergence on the support of f) each v € K has a neighbourhood on which

(f = f ) is positive. These neighbourhoods form an open cover. Extracting a

finite subcover we get f1, fa, ..., fr € C(G) and 74,74, ...,7; € K such that the
k

Fourier transform of ¢ = Z fi = f, is positive on K. Note that 1 € C.(G).

i=1
We claim that 1» € M. For this we apply Bochner’s Theorem. First note that
k
f* f is positive definite for any f € L'. [ In fact Zczc;(f * f~)(xzx;1) =

i=1
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f(z;y)| dy]. Hence ¢ is continuous and positive definite. Bochner’s

>

Theorem implies that ¢ € M. Let Th = /ﬁduw where 11, is defined by ¢(z) =
o

/W(m)duw(’y). We claim that T is well defined on C.(G) : ¥, € C.(G), 4, >0
o

on K; and ¢ (z) = /'y(x)duw (7). We have to show that /Qduw = Aiduw .

1 w by
G . . G G

Since 9,1y € M we have ¥(y)dpy, (7) = 1 (7)dp, (7). Multiplying both sides

by 70 and integrating we get /wdﬂw 7 dpiy, - Thus T is a well defined
el G”

linear map on C.(G). Note that My is a positive measure. Hence T'is a positive

linear functional on C.(G). Claim: T is not identically 0. If f € L' N M then

T(hf') = /%fdud, = /hﬂfpd,uf = /hd,uf. To prove the claim it suffices to

show that /hdpf # 0 for some h € C.(G) and some f € L' N M. If this is false

then p, = 0 for every f € L' N M. The equation (g * f)(e) = /f](’y)duf('y)
o
Vg € LY,V f € L'NM shows that (g f)(e) = 0, i.e. /g(y)f(yil)dy =0VgeL!

so L'NM = {0} in which case there is nothing to prove. Hence T is not the zero
functional. Now fix h € C.(G) and v € G. Let ¢ € C.(G) be constructed as
above with ¢ € K replaced by KU (K7) (so > 0on K as well as on Kv). Let

fla) = 43 Then f(3)) = [ syma(o)ds = om) and py(4) = 1y (AE). |
Define 7: G — G by 7(7,) = 77, Then /%(fﬂ)duw(%) = (x) = y(x)f(x) =

1@ [ 1@y @) = [0)(@)ding() = [11(@)dg o 7 ). Uniqueness

of the measure in Bochner’s theorem gives i, = py o 771, Let ho(y,) =

Y1 h _ Y _

h(%). Then Thy = / 20 dy,, = /h( 1)1/)(7) L (Y /h «/)(w dpg(y) =
e e e

/f \Vl) dpiy(y) = Th. In other words Th = Th., where h., is the translate of

h by 7. T is, therefore, a translation invariant positive linear functionsal on

C.(G) and hence Th = [ hdv for an appropriate choice of Haar measure v on
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G. If fe L'NM and h € C,(G) then /hduf = T(hf) = /hfdz/(fy). This
. G~ R R G~
yields duy = fdv which in turn proves that f € LY(G).

Finally we have f(z) = /'y(:c)duf(’y) = /fy(:z:)f(’y)du(’y) if feL'nM.
This completes the proof.

Corollary
Sets of the type {z € G : [l —v(x)] < 0 Vy € K} where § > 0 and K is
compact in G form a local base at e. Also G separates points of G.

Proof: we already know that the sets here are open. Let x # e. There exists
an open set U such that « ¢ U, e € U. There exists a compact neighborhood W

of e such that W—! = W and WW C U. Let f = WIW and g = f*f .

Then g is continuous with support in WW. Also g is positive definite. By

Bochner’s Theorem it follows that g € L' N M. Hence g(x) = /@(7)7(x)d7

o
for all . In particular g(e) = /g(’y)d'y. However g(e) = /f(y_l)f(y)dy =
o
2
> 0. There is a compact

dwym(W) = 1. Thus /g('y)dfy =1 and § = ’f
J

set K in G such that /g('y)d’y >2/3. Ifye Gand |1 —7(y)| <1/3Vye K

K
we claim that y € U. This would certainly show that every neighbourhhod
of e contains {z € G : |1 —~v(x)] < 6§ ¥y € K} for some 6 > 0 and some
compact set K in G proving the first part. It also shows that v(x) # 1 for
some v € K. [ Otherwise |1 —~(z)] < 1/3 Vy € K so ¢ € U which is a
contradiction. Thus x # e implies y(z) # 1 for some v € G. If z # y then
there exists ¥ € @ such that y(zy~') # 1 which implies v(z) # ~(y). It
remains to show that if y € G and |1 —v(y)| < 1/3 Vy € K then y € U. We

have g(y) = / g (y)dy = / 9 (y)dy + / I (y)dy = ¢+ d (say).
@ G\K K

Note that |¢|] < 1/3 because [ g(y)dy = 1 — [g(y)dy < 1/3. Also Red =
Jres]

Re / dYw)dy = / 3(7) Re(y)dy and Re(y) > 2/3 so Red > (2/3)°. Tt

K K
follows that Re(c + d) = Red + Rec > (2/3)2 —1/3 = 1/9 so Reg(y) > 1/9.
In particular g(y) # 0. Since g has support in WW C U we have proved that
yeU.
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Remarks: let G be an LCA group and H a closed subgroup of G. Give G/H
the quotient topology ( namely the smallest topology that makes the quotient
map 7(z) = xH continuous). Then G/H is also an LCA group. If x € G\H
then xH is a non-zero element of G/H. Hence there exists a character £ of G/H
such that ((zH) # 1. Defining v € G by v = £om we get y(y) = 1 for all
y € H but y(z) # 1. We prove later that any character on a closed subgroup of
G can be extended to a character on G.

Corollary
If G is a compact abelian group then the set of all trigonometric polynomials
n

(i.e. functions of the type Z ¢iv; where n € N, cls € C and 7}s € G) is dense
i=1
in C(G) with respect to the supremum norm.

Proof: this follows immediately from previous corollary and Stone - Weier-
strass Theorem.

Remark: for any p € [1,00) C(G) is dense in LP so trigonometric polynomials
are dense in LP.

In the following theorem we write LP for LP(G).

Theorem [ Plancherel]
The map f — f maps L' N L? into L?( ') and it is an isometry. It extends
to an isometric isomorphism of L? onto L?(G).

Proof: let f € L' N L? and ¢ = f * f . Then g is positive definite. It
is continuous and integrable. [ Convolution of any two L? functions is con-
tinuous]. By Bochner’s Theorem g € L' N M. Hence the inversion formula

glx) = /g('y)'y(x)dv holds for all . Hence g(z) = /‘f(v)r'y(x)dv. Put

z = e to get/W = (F* 1)) = gle) =/’f(7)(2d7- Hence f — f maps

L' N L? into L?(G) and it is an isometry. Since C.(G) is dense in L? it follows
that L' N L? is dense in L2 Hence f — f extends to an isometric isomorphism
of L? onto its range. Let S = {f :f e L'nL?}. To complete the proof we have
to show that S is dense in L?(G). Suppose h € L?(G) is orthogonal to S. Note
that f € L'NL? = 5(x)f(y) € S for each z € G. [ This is because f, € L' NL?
and (f;)"(7) = 5(2)f(7)]. Hence f € L' N L? implies / h(y)3(x) f (y)dy = 0 for
all z. Since h € L*(G) and f € L2(G) we have hf € kL*(G). However if y is a
complex Borel measure on G such that /'y(ac)du('y) = 0 for all z then p = 0.

Hence hf = 0 a.e. If v € G then there exists f € L' N LQAsuch that f(v,) # 0
for all v, in a neighbourhood of 7. [ There exists ¢ € C.(G) such that ¢ =1 in
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a neighbourhood U of «. Since {f : f € L'} is dense in Cy(G) there exists a
sequence {f,} C L' such that f,, — ¢ uniformly. There exists {g,} € L' N L2
such that || f,, — gn||1 < 1/n. Now ‘fn - gn‘ () < |fn _gnHl < 1/n. It follows
that g, — ¢ uniformly. Hence |§,| > 1/2 in U if n is sufficiently large. In par-
ticular g, # 0 on U. We can take f = g,]. Hence h = 0 a.e. in a neighbourhood
of each point . This implies h = 0 a.e.: if K C G is compact then h = 0 a.e. on
K as seen by a straightforward compactness argument. If £ = {v : h(y) # 0}
then m(E N K) = 0 for each compact set K. Regularity of Haar measure now
shows that m(E) = 0. This completes the proof.

Theorem

{(frfelY={¢xv:9,0 € LXG)} (¥

Proof If f € L' we can write f = gh where g,h € L?. | Take g =
VIFl b /g( ) if g(z) # 0,0 if g(xz) = 0]. By above theorem § and
h e L2. Clalm. f = g h. If we prove this it would follow that the left
side of (*) is contained in the right side. To prove the claim note that an isom-

etry preserves inner products. So we have the Parseval Formula / g(x)h(z)dr =

Jatm Il Replace ha) by @iz to get [ g(alh(@)ita)de = [ 56,
(because the Fourier transform of ~(x)h(z) at v, is [A(yy71)] 7). Since (§ *
h)(7) = /g(wf Vh(vy)dy, = /9(7 V(73 ") dy, we get /g(w)h(w)ﬁ(ﬂf)dx =

(§ % h)(7). The claim is proved.

It remains to show that the right side of (x) is contained in the left side.
If ¢, € LQ(G) we can write ¢ = ¢ and ¥ = h for some g,h € L?. Hence
Qx1h = gx* h = f~ where f is the L' function gh. This completes the proof.

Corollary R R
Let U be a non-empty open set in G. There exists f € L' such that f =0
on U¢ but f is not identically 0.

Proof: there exists a compact set K C U such that m(K) > 0. There

exists an open set V' containing e such that Vs compact and K +V C U. By
Plancherel Theorem there exist g, h € L? such that § = I [rc and h = Iy. Since
g,h € L? we have (by the proof of above theorem) § * h = f where f = gh.
Clearly, f € Ll,f = 0on (K + V)¢ ( because § = 0 on K¢ and h =0 on

Vo) hence on U but [ £ ()dy = [(ax @y = [a6)an [y =
m(K)m(V) > 0 so f is not identically 0.

Theorem [ Pontryagin Duality Theorem]
Let G be an LCA group and define 6 : G — G~ by 6(z)(v) = v(z). Then 0
is a group isomorphism as well as a homeomorphism (onto G ).
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Proof: it is trivial to check that @ is a group isomorphism onto the range, say
H, which is a subgroup of G~ . We first prove that this map is a homeomorphism
onto its range. To complete the proof we then show that H is both dense and
closed in G~ . Let K C G be compact, r > 0 and

U={zeG:[1-v@)|<rVWeK)LV={®cG :|1-®()|<rvye
K}. We have proved that these are typical sets from neighbourhood bases at the
identity in G and G respectively. Note that 6~ (V N@(G)) = U. This proves
that 0 and 0~ are continuous at the identity elements of G and G~ respectively.
Hence 6 is a homeomorphism onto its range. As a consequence of this the range
of 6 is locally compact. The next lemma shows that a locally compact sugbroup
of a locally compact abelian group is necessarily closed. Hence H is closed. All
that remains is to show that H is dense in G . We apply previous corollary
with G changed to G taking U to be G \#(G). Assuming that U is non-empty
we shall arrive at a contradiction. There exists h € Ll(é) such that A is not

identically 0 but & is 0 on U¢ = (G). We have h(f(z)) = /h(’y)[ﬁ(m)('y)}*dv =

/h(’y)*y(a;)d’y = 0 for all z. Changing = to x~! gives /h(’y)’y(m)d’y = 0 for all
x. Since the only complex Borel mesure ;1 with /’y(x)du('y) = 0 for all z is the

zero measure we get h = 0. Hence h = 0, a contradiction.

Lemma
Let G be a Hausdorff topological group. Let H be a subgroup of G which is
also locally compact in the relative topology from G. Then H is closed in G.

Proof: let U be a neighbourhood of e in H whose closure (in H) is compact.
Let U = HNV with V open in G and A =V U (Clg(U)\U} where Clg(U) is
the closure of U in H. Then AN H = Cly(U) which is compact, hence closed
in G. Let W be an open set in G such W = W~ and WW C V and e € W.

[ Possible because V is a neighbourhood of e in G]. If © € H then 27! € H

too because H is a subgroup. Hence x 'WNH # 0. Let y € z7'\W N H. If
yr ¢ AN H then there exists a neighbourhood U; of yx which does not intersect
AN H. the neighbourhood y~'U; NzW of = must contain a point z of H. Thus
z €y Uy NaW N H and so yz € yzW C WW ( because y € z~'W) and
yz € A. Alsoy and z € H. Thus yz € AN HNU; a contradiction since U; does
not intersect AN H. Thus yxr € AN H. Since y € H this gives € H. This
completes the proof.

Corollary
If v is a regular Borel measure on G such that /'y(x)du(x) =0forally e G
then p = 0.

Proof: this follows immediately from an earlier result if we think of u as a
measure on G .
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Corollary [ Inversion]
If fe L' and f € LY(G) then f (0(z)) = f(z) a.c.

Proof: we prove that if x is a regular Borel measure on G and i € LY(G)

(where fi(y) = /"y(:zr)d,u(m)) then % = /[L(’y)’y(ax)d’y. The corollary follows

from this by defining u(A) as /fdm. Note that 1 € L'(G) N M(G) because
A

it is continuous and it is a linear combination of at most 4 positive definite

functions. | M(G) is defined the way M was defined earlier with G replaced by

G]. Let f(z) = /,&('y)'y(;v)dv. The inversion formula proved earlier states that

p (z) = f(x71) € L' and a(y) = /f(;r:_l)'y(m)dx for all 4. [ We have used
G

Pontryagin Theorem here]. The proof is complete.
Extending characters from closed subgroups to whole groups

If H is a closed subgroup of an LCA group G then G/H is an LCA group
when it is given the qutient topology. Let m : G — G/H be the qutient map so
that a set F is open in G/H iff 7=!(E) is open in G.

z
Theorem
Any character on a closed subgroup H of G can be extended to a character

on G.

Before we can prove this we need some preliminaries. The fact that G/H
is an LCA group is easy to see. [Just use the fact that the quotient map
7 : G — G/H is continuous and open]. Let A = {y € G : y(z) = 1 Vz € H}.
Note that A is a closed subgroup of G (hence an LCA group in the relative
topology). Define ¢, : (G/H) — A by ¢y(&)(x) = &(zH) for all z € G.
Clearly this is a well-defined map with range in A. We claim that ¢, is a group
isomorphism and a homeomorphism. It is obviously injective. If v € A then
&(xH) = ~(x) gives a well-defined element of (G/H) : continuity of ¢ follows
from the fact that £ o m(= ) is continuous. Thus ¢, is a group isomorphism.
Basic neighbourhoods of the identity in (G/H) and A are of the type V =
{£:]1-&xH)| < o0VzH €¢ Ctand W ={y € A: |l —v(z)| < § Yz € D}
where C is compact in G/H , D is compact in G and § > 0. Observe that if
C=nD)then V=A{¢:|1-Com(z)|] <V e D}={:|1—¢y(&)(x)] <o
Yz € D} = ¢y (W). Hence, to show that ¢, is a homeomorphism it suffices
to show that C is compact in G/H if and only if there is a compact set D
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in G such that C = w(D). The "if” part is obvious. Suppose C is compact
in G/H. For each z € 7~ !(C) there is an open set U, such that z € U,
and U, is compact. Since C' C U w(U,) (and 7 is an open map) there
zen—1(C)

k
exists a finite set {x1,22,....,2x} C 7 1(C) such that C C m(Uy,;). Let

i=1
D=rYC)n[U,, UU,, U..UU,]. Clearly D is compact. If y € C then
y € w(Uy,) for some i so y = w(z) for some x € U,,. We then have x € D
and y = 7(z) so C C 7(D). Of course 7(D) C w(x~*(C)) C C. We have
proved that ¢, : (G/H) — A is an isomorphism and a homeomorphism. By
the next lemma H = {z : y(z) = 1 ¥y € A}. Replacing G by G, H by A we
conclude that (G/A)" is isomorphic and homeomorphic to O(H) where 6 is the
Pontryagin map from G onto G . The isomorphism ¢ : (G/A) — O(H) is
defined by (¢(7))(7) = 7(vA) for all 7 € (G/A)".

Now let 7, € H. Consider the map F : (G/A)" — C defined by F(®) =
Yol(0 ' op)(®)]. This is well-defined because ¢(®) € (H) and (0~ o) (®) € H.
Clearly F € (G/A)". Let 6y : (G/A) — (G/A)"" be the Pontryagin map. Since
0y is surjective there exists vy € G such that Oo(vA) = F. We claim that + is an
extension of y,. Let 7 = ¢~ (A(x)) where z € H is fixed. In the definition of F
pt & = 6 (8(x)). Then 10[(0~" 0 )(B)] = F(B) = [fo(1A)](®) = B(yA) =
[0 (8(x))](vA). The left side of this is vo(6~ " (A(x)) = vo(z). The proof will
be complete if we show that the right side of the equation, i.e. [¢~(8(z))](vA)
is v(x). Recalling that 7 = ¢~ '(f(x)) we get é(7) = 0(z) so ¢(7)(7) = v(x)
by the definition of . Now ¢(7)(vy) = 7(7A) by the definition of ¢. Hence
[0 (0(x))](vA) = T(yA) = ¢(7)(7) = v(x). The proof is now complete.

Lemma R
If H is a closed subgroup of G and A = {y € G : v(z) = 1 Vz € H} then
H={zeG:v(x)=1Vye A}

Proof: G/H is an LCA group. If x ¢ H then «H # eH so there exists
¢ € (G/H) such that ((xH) # 1 and £ o (where 7 : G — G/H is the
projection map) gives an element v, of G such that v=1on H but vy(z) # 1.
Thus v € A but y(z) # 1. This proves that {x € G : v(z) =1Vy € A} C H.
The reverse inclusion is obvious.

Theorem
If G is a compact abelian metric group then G is countable and G is an
orthonormal basis for L2.

Proof: if v;,7, € G then /’yl(z)’_yQ(x)dm =0if y; # 75 and 1 if y; = 5.
[ The Haar measure is normalized so as to make it a probability measure].

Indeed if v is a character which is non-constant then / y(x)dx = / y(yz)dx =
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'y(y)/v(x)da: and we can choose y such that v(y) # 1, so, taking v = % we get

/’yl(z)%(:c)dz = 0]. Since C(G) is separable ( in sup norm) and dense in L?
we see that L? is separable too. Hence the orthonormal set G must be at most

countable. If f € L? and /f(:z:)"y(m)dx = 0 for every character v then f =0
because || f|l, = HfH2 [ Note that Haar measure is finite so f € L? implies

feL'andso f(v) = /f(x)"y(x)dx] This proves the theorem.
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